ASN DIALYSIS CURRICULUM

Insert Graphic for DAG curriculum on first slide
Monitoring and Surveillance of Vascular Access

Tushar Vachharajani, MD, FASN
Chief, Nephrology Section
Professor of Nephrology
W. G. (Bill) Hefner VA Medical Center
North Carolina
Objectives

• Define Monitoring of vascular access and differentiate from Surveillance
• Discuss surveillance techniques
• Discuss available evidence on access assessment tools
Current Vascular Access Options

• AV fistula and AV graft are considered superior to catheter access
• Remarkable success has been achieved in increasing prevalence of AV fistula
• However, vascular access complications are common and result in hospitalization, mortality and expense
• Guidelines suggest various methods to maintain patency of vascular access
Common Issues With Vascular Access

• **Primary failure due to poor maturation of AVF**
 - ~60% failure rate - NIH sponsored DAC study, JAMA 2008

• **Stenosis due to neo-intimal hyperplasia in established access**
 - AVG: Mainly at the venous anastomosis
 - AVF: Arterial (inflow) anastomosis, venous (outflow) track

• **Thrombosis as a result of stenosis**
 - AVG > AVF
 - Each thrombotic event reduces the survival of the access

• **Central vein stenosis:**
 - "incidence with subclavian catheters"
 - "with number of central catheters"
 - Needs recurrent intervention to maintain patency
Definitions

Monitoring— evaluation of the vascular access by means of physical examination to detect physical signs that suggest the presence of dysfunction

Surveillance— Involves periodic evaluation of access by special tests requiring special instruments to detect dysfunction

- Access flow
- Intra access pressure and resistance
- Doppler duplex ultrasound imaging
Rationale for Access Assessment

- Stenosis is almost always a prerequisite for access thrombosis
- Preemptive detection and correction of stenosis should reduce likelihood of access thrombosis
- Results of intervention after thrombosis of access are inferior to the results of pre-emptive intervention (angioplasty)
- Non invasive monitoring can predict such stenosis with a high positive predictive value
Goals of Access Assessment

• Early detection of anatomically severe, and physiologically significant stenosis within the access

• To be able to correct the stenosis and prevent thrombosis- which requires diagnostic testing and intervention
K/DOQI Clinical Practice Guideline 4 - Treatment of Stenosis

Clinical criteria

• $Q_a < 600 \text{ ml/min AVG}$
• $Q_a < 500 \text{ ml/min AVF}$
• Elevated intra-access venous pressures
• Abnormal PE

Prospective trend analysis can detect dysfunction better compared to single test value
Potential Advantages with Access Assessment

• Keep permanent vascular access patent
• Improve dialysis clearance
• Minimize or avoid central venous catheter use
• Improve Quality of Life for patients and dialysis staff
Goals of Monitoring and Surveillance

• New AVF
 • Identify primary failures
 • Plan for early interventions
 • Plan for surgical revision/new access

• Established AVF/AVG
 • Early detection of problem to prevent
 • Thrombosis
 • Prolong patency
 • Inadequate dialysis treatment
When to Start Monitoring

• Soon after creation of AVF to follow maturation
• Throughout the life of AV access (both AVF and AVG) - to maintain patency and adequate function
Methods of Monitoring

• **Physical Examination**
 - (inspection, palpation, auscultation) to detect physical signs of
dysfunction or loss of patency

• **Measurement of delivery of dialysis dose**

• **Presence of clinical evidence of dysfunction**
 - difficult cannulation, prolonged bleeding after dialysis, swelling of
 extremity, aneurysm formation of access
Initial Evaluation of AVF

- To evaluate maturity and adequate flow
- Should be done at 4 weeks after creation
- Rule of 6’s for ‘maturity’
 - 6mm diameter
 - 6mm or less in depth
 - 6cm straight segment for cannulation
 - 600ml/minute blood flow
Markers of an Adequate AVF

- Fistula size >4mm has 89% chance of successful use vs. 44% if smaller in size
- Fistula flow >500ml has 84% chance of successful use vs. 43% if less
- Combining the two- 95% vs. 33% success if criteria were not met

Robbin et al. Radiology 225:59-64, 2002
Sensitivity and Specificity of Monitoring (Physical Examination)

- 142 consecutive patients
- Upper arm AVF 95 (67%)
- Forearm AVF 47 (33%)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Sens</th>
<th>Spec</th>
<th>PE + Angio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow stenosis</td>
<td>85%</td>
<td>71%</td>
<td>83%</td>
</tr>
<tr>
<td>Outflow Stenosis</td>
<td>92%</td>
<td>86%</td>
<td>89%</td>
</tr>
<tr>
<td>Coexisting inflow-outflow stenosis</td>
<td>68%</td>
<td>84%</td>
<td>79%</td>
</tr>
<tr>
<td>Central vein stenosis</td>
<td>13%</td>
<td>99%</td>
<td>poor</td>
</tr>
</tbody>
</table>

Asif et al CJ ASN 2:1191;2007
Surveillance Method Selection

• Ease of test
• Technical / labor cost
• Data Collection and review
• Evidence in literature
Flow - Pressure Relationships

- Access pressures indicates development of stenosis.
- Venous access pressures can change with MAP.
- VAPR = VAP/MAP

2006 K/DOQI Guidelines for Vascular Access
Effect of Graft Venous Outlet Stenosis

Intra-access Flow (ml/min)

- **Access Recirculation Region**
- **Graft Thrombosis Region**
- **Region of Good Function**
- **Arterial Pressure Thresholds**
- **Venous Pressure Thresholds**

Besarab A: Blood Purif 2006;24:77-89
Surveillance Methods

• **Access blood flow - induced recirculation**
 • using transonic device - saline - gold standard
 • change in UF rate using hematocrit
 • change in conductance with built-in flow measurement device in a dialysis machine (Gambro, Fresenius 2008K)

• **Static venous pressures**

• **Doppler Ultrasound imaging**
Compilation of Studies using Historical Controls Showing the Effect of Surveillance vs Monitoring

Besarab A: Blood Purif 2006;24:77-89
Unadjusted Thrombosis-free Survival

- 5 year randomized controlled trial compared blood flow surveillance and preemptive repair of subclinical stenoses (one or both of angioplasty and open surgery) with standard monitoring and intervention based upon clinical criteria alone to determine if the former prolonged the longevity of mature forearm AVFs.
- Surveillance with blood pump flow (Qb) monitoring during dialysis sessions and quarterly shunt blood flow (Qa) or recirculation measurements identified 79 AVFs with angiographically proven, significant (>50%) stenosis.
- AVFs were randomized to either a control group (intervention done in response to a decline in the delivered dialysis dose or thrombosis; n=36) or to a pre-emptive treatment group (n=43).

Unadjusted Thrombosis-free Survival

- A Kaplan–Meier analysis showed that preemptive treatment reduced failure rate ($P = 0.003$) and the Cox hazards model identified treatment ($P = 0.009$) and higher baseline Q_a ($P < 0.001$) as the only variables associated with favourable outcome.

- Primary patency rates were higher in treatment than in control AVFs in both functional ($P = 0.021$) and failing subgroups ($P = 0.005$).

- Access survival was significantly higher in pre-emptively treated than in control AVFs ($P = 0.050$), a higher post-intervention Q_a being the only variable associated with improved access longevity ($P = 0.044$).

- Secondary patency rates were similar in pre-emptively treated and control AVFs in both functional ($P = 0.059$) and failing subgroups ($P = 0.394$).

- Secondary patency was also similar in functional and failing AVFs in controls ($P = 0.082$), but were higher in pre-emptively treated functional AVFs than in pre-emptively treated failing AVFs ($P = 0.033$) or in the entire control group ($P = 0.019$).
Surveillance and Access Thrombosis

- A total of 132 chronic hemodialysis patients were treatments, and surgical interventions. Vascular access blood followed prospectively for three consecutive study phases:
 - Phase 1 - 11 months of no monitoring
 - Phase 2 - 12 months of dynamic venous pressure monitoring
 - Phase 3 - 10 months of vascular access blood flow monitoring

- All vascular access-related information (thrombosis rate, hospitalization, angiogram, angioplasty, access surgery, thrombectomy, catheter placement, missed treatments) collected during the three study periods
Surveillance and Access Thrombosis

Events Per-Patient Year at Risk

- **P<0.0001 vs phase 1 and 2**

<table>
<thead>
<tr>
<th>Phase</th>
<th>AVG</th>
<th>AVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-No Monitoring</td>
<td>0.71</td>
<td>0.14</td>
</tr>
<tr>
<td>II-Dynamic Venous pressure</td>
<td>0.67</td>
<td>0.15</td>
</tr>
<tr>
<td>III Access Blood Flow Monitoring</td>
<td>0.16</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Mccarley P -Kidney International 2001
Access Related Event Rates - AVG

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalization Rate</td>
<td>1.8</td>
<td>1.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Dialysis Catheter Rate</td>
<td>0.98</td>
<td>0.86</td>
<td>0.4</td>
</tr>
<tr>
<td>Missed Treatments</td>
<td>0.29</td>
<td>0.17</td>
<td>0.26</td>
</tr>
</tbody>
</table>

*p<0.05 vs Phase 1
** p<0.001 vs Phase 1 and 2

Mccarley P - Kidney International 2001
Access related event rates - AVF

Phase 1
- Hospitalization Rate: 0.72
- Dialysis Catheter Rate: 0.39
- Missed Treatments: 0.18

Phase 2
- Hospitalization Rate: 0.47
- Dialysis Catheter Rate: 0.27
- Missed Treatments: 0.06

Phase 3
- Hospitalization Rate: 0.1
- Dialysis Catheter Rate: 0.07
- Missed Treatments: 0

*p<0.05 vs phase 1
**p<0.05 vs phase 1 and 2

Mccarley P -Kidney International 2001
Access Pressure for Surveillance
Automated non-invasive Surveillance

- 24 month study comparing thrombosis rates during a baseline 6-month interval to three subsequent 6-month periods of active surveillance
- Vascular access pressure ratios (VAPR) measured during each dialysis treatment
- Trends were monitored generating alerts
- VAPR > 0.55 was considered significant and referred for interventions
- No special instrument or technical staff was needed
- Thrombosis rate decreased 57% with timely intervention
Thrombotic Events with Automation

Zasuwa et al – Seminars in Dialysis 2010
Observational Studies

• **Thrombosis rate**
 • Beasarb et al (KI-1995)- 70% “-static VP
 • Sands et al (ASAIO-1999)- 6.5 fold “-Doppler
 • Hoeben et al (Am J Nep -2003)- 2-fold “- flow surveillance
 • Glazer et al (Ann Vas Surg – 2006) 2-fold “-flow surveillance

• **Improved QOL**

• **Not necessarily prolonged the access life**
Randomized Controlled Studies

<table>
<thead>
<tr>
<th>Name</th>
<th>Total No. of patients</th>
<th>Control</th>
<th>Study Patients</th>
<th>Surveillance methods tested</th>
<th>Primary Outcome</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roca-Tey et al, 2004*, Nefrologia</td>
<td>159</td>
<td>65</td>
<td>94</td>
<td>Access Flow</td>
<td>Access Thrombosis</td>
<td>Positive</td>
</tr>
<tr>
<td>Malik et al, 2005, Kidney Int.</td>
<td>192</td>
<td>92</td>
<td>97</td>
<td>Ultrasound</td>
<td>Cumulative patency</td>
<td>Positive</td>
</tr>
<tr>
<td>Plantinga et al, 2006*, J Vasc Access.</td>
<td>363</td>
<td>185</td>
<td>178</td>
<td>Multiple</td>
<td>Multiple outcomes</td>
<td>Positive</td>
</tr>
<tr>
<td>Polkinghorne et al, 2006, Nephrol Dial Transplant</td>
<td>126</td>
<td>61</td>
<td>65</td>
<td>Ultrasound</td>
<td>>50% stenosis</td>
<td>Negative</td>
</tr>
<tr>
<td>Robbin et al, 2006, Kidney Int.</td>
<td>126</td>
<td>61</td>
<td>65</td>
<td>Ultrasound</td>
<td>Graft survival</td>
<td>Negative</td>
</tr>
</tbody>
</table>

*Prospective nonrandomized studies
Randomized Trials with Abnormal Surveillance
Results Comparing Intervention vs Observation

<table>
<thead>
<tr>
<th>Name</th>
<th>Total no. of patients</th>
<th>Intervention</th>
<th>Observation</th>
<th>Surveillance methods used</th>
<th>Primary outcome</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumsden et al, 1997, J Vasc Surg.</td>
<td>64</td>
<td>32</td>
<td>32</td>
<td>Color flow duplex scan</td>
<td>Cumulative patency</td>
<td>Negative</td>
</tr>
<tr>
<td>Martin et al, 1999, J Vasc Interv Radiol.</td>
<td>21</td>
<td>8</td>
<td>13</td>
<td>Color flow duplex scan</td>
<td>Virgin graft patency</td>
<td>Positive</td>
</tr>
<tr>
<td>Dember et al, 2004, Kidney Int.</td>
<td>64</td>
<td>32</td>
<td>32</td>
<td>Pressure/systolic blood pressure ratio</td>
<td>Access survival</td>
<td>Negative</td>
</tr>
<tr>
<td>Scaffaro et al, 2009, J Ultrasound Med.</td>
<td>108</td>
<td>53</td>
<td>58</td>
<td>Duplex scan</td>
<td>Thrombosis</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Drawbacks of Randomized Trials

- Total 12 RCT, 8 AVG and 4 AVF
- Small sample size
- Population characteristics are not uniform
- Variable method of surveillance
- Recruitment criteria and randomization is unclear and not uniform
- Primary end point studied is variable
Summary

• AV access become dysfunctional due to occurrence of stenosis

• Clinical monitoring, primarily through evidence of access dysfunction and physical examination can provide clues to the presence of stenosis

• Monitoring alone is relatively inexpensive and accurate in experienced hands
Summary

• Conflicting results from observational and RCT studies
• Surveillance works in reducing thrombotic events
• Surveillance works in reducing hospitalization, CVC and missed HD treatment rates
• No definite evidence to suggest that it prolongs access life
• Need adequately powered RCT with a larger sample size
Final Take Home Message

• Monitoring and surveillance are to be used in combination to achieve the ultimate goal of maintaining access patency
• When done by expert staff on a routine basis, monitoring itself may be sufficient in detecting stenosis, potentially making added surveillance redundant