ASN DIALYSIS ADVISORY GROUP

ASN DIALYSIS CURRICULUM
AN UPDATE ON UREMIC TOXICITY:
Part 1

Raymond Vanholder, M.D., Ph.D.
Nephrology Section, Department of Internal Medicine
Ghent, Belgium
Disclosures

• Dr. Vanholder’s dialysis unit receives unrestricted research grants from Fresenius Medical Care, Baxter Health Care, Gambro, Bellco and Nipro
BASIC PRINCIPLES OF HEMODIALYSIS AND ITS IMPACT ON SOLUTE REMOVAL
DIFFUSION VS. CONVECTION

DIFFUSION

CONVECTION
IMPACT OF LOW-FLUX DIALYSIS ON DIFFERENT TYPES OF UREMIC TOXINS

- Small water soluble compound
- Middle molecule
- Protein bound compound
- Free protein bound compound
IMPACT OF HIGH-FLUX DIALYSIS ON DIFFERENT TYPES OF UREMIC TOXINS

- small water soluble compound
- middle molecule
- protein bound compound
- free protein bound compound
IMPACT OF HEMODIAFILTRATION ON DIFFERENT TYPES OF UREMIC TOXINS

- small water soluble compound
- middle molecule
- protein bound compound
- free protein bound compound
UREMIC SOLUTE KINETICS HAS A MAJOR IMPACT ON THEIR REMOVAL

FIGURE: Two-compartment kinetic model. V_1: plasmatic volume, V_2: extraplasmatic volume, C_1: plasmatic concentration, C_2: extraplasmatic concentration, $MT_{dialyser}$: mass transfer in the dialyser, K_{21}: intercompartment clearance, G: solute generation.

Eloot et al, NDT, 27:4021-4029; 2012
UREMIC SOLUTE KINETICS HAS A MAJOR IMPACT ON THEIR REMOVAL

FIGURE: Two-compartment kinetic model. V_1: plasmatic volume, V_2: extraplasmatic volume, C_1: plasmatic concentration, C_2: extraplasmatic concentration, $MT_{dialyser}$: mass transfer in the dialyser, K_{21}: intercompartment clearance, G: solute generation.

Eloot et al, NDT, 27:4021-4029; 2012
UREMIC SOLUTE KINETICS HAS A MAJOR IMPACT ON THEIR REMOVAL

FIGURE: Two-compartment kinetic model. V_1: plasmatic volume, V_2: extraplasmatic volume, C_1: plasmatic concentration, C_2: extraplasmatic concentration, $MT_{dialyser}$: mass transfer in the dialyser, K_{21}: intercompartment clearance, G: solute generation.

Eloot et al, NDT, 27:4021-4029; 2012
UREMIC SOLUTE KINETICS HAS A MAJOR IMPACT ON THEIR REMOVAL

FIGURE: Two-compartment kinetic model. \(V_1 \): plasmatic volume, \(V_2 \): extraplasmatic volume, \(C_1 \): plasmatic concentration, \(C_2 \): extraplasmatic concentration, \(MT_{\text{dialyser}} \): mass transfer in the dialyser, \(K_{21} \): intercompartment clearance, \(G \): solute generation.

Eloot et al, NDT, 27:4021-4029; 2012
3x4h \(Q_B \ 300 \) \hspace{1cm} 6x2h \(Q_B \ 300 \) \hspace{1cm} 3x8h \(Q_B \ 200 \)

STEEP INITIAL DECLINE

C_1 \hspace{1cm} **C_2**

SLOWER SUBSEQUENT DECLINE

REBOUND

B2M concentration (mg/L)

time (min)
Summary

• **In vitro effect**

• **In vivo effect**

• **Removal of small molecules**
 • Analytical data on adequacy
 • Clinical outcomes

• **[Removal of protein-bound and middle molecules covered in Uremic Toxins: part 2]**

Urea
Effect of increasing dialysate urea

This figure was published in Mayo Clin Proc, 47, Johnson et al., Effects of urea loading in patients with far-advanced renal failure, 21-29. Copyright Elsevier (1972).
UREA DISRUPTS INTESTINAL WALL PROTECTIVE BARRIER

Figure 1
Bar graphs depicting the TER (transepithelial electrical resistance) in intestinal epithelial T84 cell monolayers incubated for 24 h in regular media and those incubated in media containing 42 or 72 mg/dl urea. *** p < 0.001.

UREA INDUCES INSULIN RESISTANCE

Urea causes decreased insulin sensitivity in differentiated 3T3L1 adipocytes. (A) Effect of urea on insulin-stimulated glucose uptake in differentiated 3T3L1 cells.

D’Apolito et al, J Clin Invest, 120: 203-213; 2010

Will need to remove or alter as re-use fee is $41
TRANSPORT OF UREA AND ANALOGUES VIA ERYTHROCYTE CELL WALL

Erythrocyte solute permeability measured by stopped-flow light scattering. (A) Representative curves for the time course of scattered light intensity at 10 °C in response to a 250mM inwardly directed gradient of urea analogues. (B) Averaged solute permeability coefficients (Ps) for experiments done as in panel A (mean ± S.E., n=3).

This figure was published in Biochim Biophys Acta, 1768, Zhao et al., Comparative transport efficiencies of urea analogues through urea transporter UT-B, 1815-1821. Copyright Elsevier (2007).
Solute Concentration Correlates with Renal Function and Protein Intake (Not Kt/V)

<table>
<thead>
<tr>
<th>Solute</th>
<th>Covariates / R² full model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>nPCR / 0.850</td>
</tr>
<tr>
<td>Crea</td>
<td>nPCR / 0.150</td>
</tr>
<tr>
<td>Uric acid</td>
<td>nPCR / 0.195</td>
</tr>
<tr>
<td>beta-2-microglobulin</td>
<td>nPCR / 0.172</td>
</tr>
<tr>
<td>Hippuric acid</td>
<td>nPCR / 0.187</td>
</tr>
<tr>
<td>Indoxyl sulfate</td>
<td>nPCR / 0.059</td>
</tr>
<tr>
<td>p-cresylsulfate</td>
<td>nPCR / 0.268</td>
</tr>
<tr>
<td>p-cresylglucuronide</td>
<td>RRF / 0.134</td>
</tr>
<tr>
<td>Free hippuric acid</td>
<td>RRF / 0.206</td>
</tr>
<tr>
<td>Free indoxyl sulfate</td>
<td>RRF / 0.144</td>
</tr>
<tr>
<td>Free indole acetic acid</td>
<td>RRF / 0.166</td>
</tr>
<tr>
<td>Free p-cresylsulfate</td>
<td>nPCR / 0.189</td>
</tr>
<tr>
<td>Free p-cresylglucuronide</td>
<td>RRF / 0.135</td>
</tr>
</tbody>
</table>

Model: age, gender, nPCR, Kt/V, RRF, diabetes, body weight, vintage

Eloot et al, Plos One, 8:e76838; 2013
ADMA + SDMA
GUANIDINO COMPOUNDS
ADMA CONCENTRATION IS LINKED TO MORTALITY

<table>
<thead>
<tr>
<th>Concentration of ADMA (percentile)</th>
<th>Number of patients *</th>
<th>Hazard ratio ** (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50 th</td>
<td>33/113 (29%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>50-75 th</td>
<td>22/56 (39%)</td>
<td>1.72 (1.00-2.97)</td>
<td>0.05</td>
</tr>
<tr>
<td>> 75 th</td>
<td>28/56 (50%)</td>
<td>3.11 (1.83-5.27)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fatal and non-fatal cardiovascular events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50 th</td>
<td>29/113 (26%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>50-75 th</td>
<td>25/56 (45%)</td>
<td>2.13 (1.24-3.65)</td>
<td>0.006</td>
</tr>
<tr>
<td>> 75 th</td>
<td>27/56 (48%)</td>
<td>2.80 (1.63-4.81)</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

ADMA = asymmetric dimethylarginine
* Denominator represents number of patients at risk
** Adjusted for age and sex

Zoccali et al., Lancet, 358: 2113-2115; 2001
ADMA HAS IN VOLUNTEERS A MARKED HEMODYNAMIC EFFECT

Effect of 0.10 mg ADMA \(\text{dot} \text{kg-1 \text{dot} \text{min-1}}\) on cardiac output (A) and systemic vascular resistance (SVR) (B) in 7 healthy volunteers.

Kielstein et al., Circulation, 109: 172-177; 2004
SDMA INDUCES IN VITRO CYTOKINE GENERATION

Schepers et al, CJ ASN, 6: 2374-2383; 2011
Variables associated with the serum levels of SDMA and ADMA by linear regression

Schepers et al, CJ ASN, 6: 2374-2383; 2011
MOST GUANIDINES ARE DISTRIBUTED OVER A LARGER COMPARTMENT THAN UREA

<table>
<thead>
<tr>
<th>Compound</th>
<th>V</th>
<th>Eff Rem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>42.7±6.0</td>
<td>67±4</td>
</tr>
<tr>
<td>Creatine</td>
<td>98.0±52.3*</td>
<td>42±16*</td>
</tr>
<tr>
<td>Creatinine</td>
<td>54.0±5.9*</td>
<td>58±6*</td>
</tr>
<tr>
<td>Guanidino acetic acid</td>
<td>123.8±66.9*</td>
<td>37±14*</td>
</tr>
<tr>
<td>Guanidine</td>
<td>89.7±21.4*</td>
<td>43±7*</td>
</tr>
<tr>
<td>Methylguanidine</td>
<td>102.6±33.9*</td>
<td>42±12*</td>
</tr>
</tbody>
</table>

*: p<0.05; V: distribution volume (L); Eff Rem: effective removal (%);

Eloot et al., KI, 67: 1566-1575; 2005
A SOLUTION TO THIS PROBLEM IS MODIFYING THE TIMEFRAME OF DIALYSIS

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>3x8_150</th>
<th>3x8_200</th>
<th>6x2_300</th>
<th>6x8_200</th>
<th>3x4_350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>645 ± 180</td>
<td>682 ± 172</td>
<td>760 ± 200</td>
<td>733 ± 175*</td>
<td>1137 ± 307*</td>
<td>668 ± 173</td>
</tr>
<tr>
<td>GSA</td>
<td>0.175 ± 0.071</td>
<td>0.186 ± 0.065</td>
<td>0.206 ± 0.072*</td>
<td>0.202 ± 0.072*</td>
<td>0.298 ± 0.104*</td>
<td>0.176 ± 0.063</td>
</tr>
<tr>
<td>CREA</td>
<td>18 ± 5</td>
<td>21 ± 6*</td>
<td>24 ± 7*</td>
<td>21 ± 6*</td>
<td>36 ± 10*</td>
<td>20 ± 6*</td>
</tr>
<tr>
<td>MG</td>
<td>0.079 ± 0.042</td>
<td>0.091 ± 0.049*</td>
<td>0.111 ± 0.061*</td>
<td>0.089 ± 0.049*</td>
<td>0.179 ± 0.097*</td>
<td>0.093 ± 0.049*</td>
</tr>
</tbody>
</table>

* P <0.05, compared to reference dialysis

Eloot et al., NDT, 24: 2225-2232; 2009
See Uremic Toxins: part 2 for discussion of protein-bound and middle molecules
Conclusions

• Adequacy of removal of uremic solutes is hampered by characteristics of dialyzers and dialysis and by the multicompartmental distribution of most uremic toxins

• Removal can be enhanced by opening pore size and adding convection, but also by applying extended or frequent dialysis

• Urea, our current marker, of dialysis adequacy has long been considered to be inert but recent data may suggest a biological (toxic) effect

• ADMA and SDMA are guanidines with proven toxic effects

• Kinetics of urea are not representative for that of other water soluble compounds, like the guanidines