Chapter 34: Association Between CKD and Frailty and Prevention of Functional Losses

Emaad Abdel-Rahman
Department of Internal Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia

The incidence and prevalence of chronic kidney disease (CKD) is increasing worldwide and more so in the elderly persons. Among individuals 70 yr of age or older, the prevalence of CKD increased from 38% in 1988 to 1994 to 47% in 1999 to 2004.1 This noted increase in the number of elderly patients with CKD has been associated with new challenges where CKD has become increasingly recognized as an important comorbid condition in elderly individuals leading to death, cardiovascular events, and hospitalizations.2

Recently, less recognized challenges, such as functional impairment and frailty, became more apparent as factors that affect the quality of life and outcomes in the elderly patients with CKD.3–6 Fried et al.5 described an association between CKD on one hand, and the development of functional impairment on the other. Roderick et al.7 further showed that the strength of the association with measures of morbidity and functional impairment increase as renal function worsened. Identifying the predisposing factors of frailty in these elderly patients with CKD, to help prevent and manage it, is being recognized more as crucial to improve their quality of life and their longevity.

FRAILTY

Definition
Frailty is a term that has been used for some time with variable definitions. Earlier definitions were vague and described an elderly patient who is lacking general strength and is susceptible to diseases. Fried et al.5 suggested a more precise and standard definition in which three or more of five components (Table 1) would define frailty, whereas the presence of one or two of these frailty components would be termed “prefrailty.” Prefrail elderly persons are more likely than nonfrail elderly persons to develop the whole frailty syndrome.8 This is an important concept because it is believed that intervention at that stage of prefrailty may reverse the frailty syndrome.9

Regardless of the definition, it is important to realize two main things. The first is that frailty develops slowly and that it may be initiated by different factors such as lack of activity, inadequate nutritional intake, stress, or triggered by a disease process such as CKD. The second is that the presence of frailty is associated with several adverse health outcomes such as functional decline [worsening mobility, activities of daily living (ADL) disability, recurrent falls, hip and nonspine fractures], hospitalization, and death.8,10–12 The recognition of these two issues highlight the importance of early identification of the problem, hopefully at the prefrailty period, and intervening in such a way to minimize the poor outcomes that are associated with the frailty syndrome.

CKD and Frailty

Background.
CKD has long been recognized to be associated with various comorbidities. Rocco et al.13 showed more than a decade ago that patients with moderate to advanced CKD have a reduced quality of life and an increased frequency and severity of poor symptoms such as tiring easily, weakness, lack of energy, difficulty sleeping, muscle cramps, and easy bruising, as well as psychologic distress. Subsequently, Shidler et al.14 showed higher negative perception of illness to be associated with higher depression scores and lower quality of life, even at early stages of CKD.

Shlipak et al.3 expanded further on that concept to show that CKD is also associated with poor func-

Correspondence: Emaad Abdel-Rahman, Department of Internal Medicine, Division of Nephrology, University of Virginia, Box 800133, Charlottesville, VA 22908. Phone: 434-243-2671; Fax: 434-924-5848; E-mail: ea6n@virginia.edu

Copyright © 2009 by the American Society of Nephrology

American Society of Nephrology
Geriatric Nephrology Curriculum
inflammatory and procoagulant biomarkers. Taking these results together, it is suggested that CKD in elderly patients, through its effects on inflammatory and procoagulant markers, may contribute to the frailty noted in these patients. This was further suggested by a pilot study conducted by Swidler et al. on 26 elderly patients with CKD, who showed that these patients exhibited a high prevalence of frailty in association with elevated inflammatory markers.

Hormonal Changes.

As we age, several changes occur in the hormonal levels and activities, and these hormonal changes are prevalent in patients with CKD and may act as contributing factors in the pathophysiology of frailty noted in the elderly patients with CKD.

The levels of both the testosterone hormone levels and vitamin D decline with aging and with CKD, and this decline has been noted to be associated with decrease in muscle mass and strength, as well as poor function in older patients. Other endocrinological abnormalities occur with aging and with CKD such as hypo- and hyperthyroidism and diabetes mellitus and are also associated with muscle strength and functional decline.

Although growth hormone (GH) levels decrease with aging, its basal levels and the spontaneous secretion of endogenous GH in patients with CKD are either normal or even increased; however, GH action is decreased in these patients with CKD because of insensitivity to GH. Giving GH to elderly patients on chronic HD improved muscle performance, suggesting a role of GH in preserving muscle function. Similarly, thyroid hormonal abnormalities are prevalent in the elderly and in patients with renal impairment and are associated with frequent comorbidities that can play a role in the noted poor outcomes.

Malnutrition.

Inadequate food intake is a common finding in elderly persons and more so in uremic patients. Alteration in taste, smell, and mental status often found in patients with CKD can lead to malnutrition. This age-related reduction in food intake, accelerated further in uremic individuals, can lead to further weight loss together with an increased loss of muscle mass and strength causing sarcopenia. Advanced sarcopenia, associated with malnutrition, is synonymous with physical frailty and is estimated to affect 30% of people older than 60 yr and may affect >50% of those older than 80 yr.

Anemia.

Anemia is highly prevalent in elderly persons and in patients with CKD and has been shown to be associated with mobility dysfunction, physical limitation, and reduced exercise capacity. The Women’s Health and Aging Studies I and II (WHAS) identified anemia as a risk factor for frailty. Taking

Table 1. Definition of frailty

<table>
<thead>
<tr>
<th>Definition of frailty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintentional weight loss (10 lbs or more in a year)</td>
</tr>
<tr>
<td>Self-reported exhaustion</td>
</tr>
<tr>
<td>Weakness (measured by grip strength)</td>
</tr>
<tr>
<td>Slow walking speed</td>
</tr>
<tr>
<td>Low physical activity</td>
</tr>
</tbody>
</table>

Table 2. Mechanisms and management of fraility

<table>
<thead>
<tr>
<th>Mechanisms of Fraility</th>
<th>Management of Fraility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase inflammatory markers</td>
<td>Anti-inflammatory/ACEI</td>
</tr>
<tr>
<td>Anemia</td>
<td>Erythropoiesis stimulating agents</td>
</tr>
<tr>
<td>Anorexia, nausea→poor nutrition, weight loss, sarcopenia</td>
<td>Nutritional support</td>
</tr>
<tr>
<td>Hormonal changes</td>
<td>Hormonal replacement</td>
</tr>
<tr>
<td>Decrease muscle strength</td>
<td>Exercise/Tai Chi</td>
</tr>
<tr>
<td>Depression</td>
<td>Psychotherapy/antidepressants</td>
</tr>
</tbody>
</table>
these studies together, anemia is suggested to be a factor predisposing to frailty in elderly patients with CKD.

Depression.
Depression is highly prevalent in patients with CKD, occurring in 20 to 30% of these patients. It correlates with both hospitalization and mortality rates and has been associated with frailty.

Management.
Several studies have investigated the effects of intervention on functional decline in elderly population with various results. The first approach in management of elderly patients with CKD is to rule out any underlying disease that could be contributing to the symptoms of frailty such as an occult malignancy, neglect, and alcohol abuse. Identifying patients at the prefrailty stage is very crucial to delay or even prevent further deteriorations. The following measures were suggested for management of both prefrailty and frailty stages (Table 2).

Exercise
The beneficial effects of exercise in the older population have been well documented. Exercise may prevent or slow down the decline in physical functioning. Interestingly, it was noted that elderly who are physically active and those who undergo resistance exercise have lower levels of inflammatory markers, suggesting an anti-inflammatory component to exercise.

Studies in the field of renal rehabilitation have shown that exercise training in HD patients improves the aerobic capacity and muscle strength. Specific types of physical activity have been shown to help reduce frailty. Tai Chi exercises have been used in China for centuries and consist of a number of stylized movements in which practitioners continuously change posture. These movements address weakness, slow walking speed, and low physical activity, three of the five frailty components.

Nutrition.
Malnutrition is common in patients with CKD and is associated with low muscle mass and sarcopenia. Managing malnutrition and supplementation of vitamin D are promising means to alleviate some of the components of frailty. This is more important in patients with CKD who have decreased levels of active vitamin D. Vitamin D was shown to improve balance, reduce falls, improve quadriceps strength, and to predict better neuromuscular performances.

Of interest, chronic inflammation, which is common in patients with CKD, may contribute to the malnutrition noted in these patients. Hence, new treatment strategies targeting inflammatory markers may be beneficial to improve the malnutrition and frailty. In this respect, angiotensin converting enzyme inhibitors (ACEIs) have been shown to be associated with a better nutritional status and lower levels of inflammatory markers in patients with CKD, as well as improving muscle strength.

Hormonal Replacement.
To combat the progression of sarcopenia, several intervention strategies including replacement or even supplementation doses of hormones such as testosterone, GH, insulin-like growth factor (IGF), and dehydroepiandrosterone (DHEA) were used.

Testosterone replacement studies have shown an increase in muscle mass in males and improved function in elderly after hospitalization. Similarly, high doses of DHEA improved muscle strength in males. GH treatment to elderly chronic HD patients produced anabolic effects, with improved muscle performance and better nutritional status, increased lean body mass at all dosage levels of GH, and improved the quality of life.

Anemia.
Patients treated with recombinant human erythropoietin had a better quality of life, significant increases in energy and physical function, significant improvement in work capacity, and an increase in measured exercise capacity. Thus, identifying and treating anemia may contribute in improving symptoms of frailty in elderly patients with CKD.

Depression.
Recent reports have suggested that depressive symptoms can be ameliorated by psychiatric counseling, cognitive-behavioral therapy, and/or medications. Good psychologic health, including positive affect, was found to significantly lower the risk of frailty. Thus, identifying symptoms of depression by screening tests as the Geriatric Depression Scale (GDS) and adequately managing depression by therapy and medication can be beneficial in the prevention of frailty. However, the treatment of clinical depression in dialysis patients presents various obstacles. First, it is difficult to encourage patients to pursue and complete an appropriate evaluation; in addition, many patients are reluctant to take additional medications, the medications themselves may have side effects, and the dialysis regimen itself imposes time constraints on patients’ willingness to obtain appropriate counseling.

Future Directives.
Several other drugs might have a role in the treatment of frailty and are currently being studied. These include anti-inflammatory and anabolic agents, psycho-stimulants, and selective androgen receptor modulators.

CONCLUSIONS
Frailty, an important problem in geriatric medicine, is becoming more recognized in patients with CKD, as well as patients with ESKD, as a factor that can even worsen the prognosis and the quality of life of these patients. It is imperative for the nephrology community, in lieu of the rising numbers of elderly...
patients being seen by nephrologists, to recognize this syndrome of frailty and work diligently to manage it.

TAKE HOME POINTS

- Frailty is a prevalent and a newly recognized challenge to patients with CKD that affects the quality of life and outcomes in elderly patients with CKD
- Frailty develops slowly and its presence is associated with several adverse health outcomes as functional decline, hospitalization, and death
- Strength of association with measures of morbidity and functional impairment increase as renal function worsens
- Several mechanisms were suggested to explain the association between frailty and CKD such as the presence of inflammatory markers, anemia, malnutrition, hormonal changes, depression, and decreased muscle strength
- Identifying and treating the underlying mechanisms at the prefrailty stage can help delay or even prevent further deteriorations

DISCLOSURES

None.

REFERENCES

*Key References

32. Chaves PHM, Ashar B, Fried LP: Looking at the relationship between hemoglobin concentration and prevalent mobility difficulty in older women: should the criteria currently used to define anemia in older women in the elderly be evaluated? J Am Geriatr Soc 50: 1257–1264, 2002
56. Zachwieja JJ, Yarasheski KE: Does growth hormone therapy in conjunction with resistance exercise increase muscle force production and muscle mass in men and women aged 60 years or older? Phys Ther 79: 76–82, 1999
64. Cukor D: Use of CBT to treat depression among patients on hemodialysis. Psychiatr Serv 58: 711–712, 2007
REVIEW QUESTIONS: ASSOCIATION BETWEEN CKD AND FRAILTY AND PREVENTION OF FUNCTIONAL LOSSES

1. The following factors have been suggested to predispose to frailty in elderly patients with CKD except:
 a. Anemia
 b. Hypertension
 c. Depression
 d. Malnutrition
 e. Decrease in growth hormone activity

2. The following were suggested to define frailty except:
 a. Weakness
 b. Slow walking speed
 c. Intentional weight loss
 d. Low physical activity
 e. Self-reported exhaustion

3. True or False:
 a. Identifying patients at the prefrailty stage is crucial to delay or even prevent further deteriorations
 b. Frailty is less prevalent in elderly with CKD versus elderly with normal kidney function
 c. New treatment strategies as angiotensin converting enzyme inhibitors is associated with a better nutritional status and lower inflammatory markers in patients with CKD, and may be beneficial in improving malnutrition and frailty