New Research Provides Clues to How Obesity Jeopardizes Kidney Health

By Tracy Hampton

Mounting evidence indicates that obesity has detrimental effects on the kidneys, and recent research is revealing the potential mechanisms involved. A new study published in the *Journal of the American Society of Nephrology* points to the important contribution of the endocannabinoid system to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy.

Up to one-third of kidney disease in the United States could be related to obesity, likely due to hemodynamic and morphologic changes in the kidney. "Obesity-associated renal structural and functional changes develop early in the course of obesity and the metabolic syndrome, and although multiple metabolic factors—such as insulin, glucose, and leptin—have been proposed to contribute to obesity-associated nephropathy, the underlying pathogenic signaling mechanisms have not been completely elucidated," said Joseph Tam, DMD, PhD, of the Institute for Drug Research at The Hebrew University of Jerusalem, in Israel.

In search of potential insights, Dr. Tam and his colleagues closely examined renal proximal tubular cells (RPTCs), which are responsible for active renal reabsorption and are especially sensitive to the accumulation of fat, an effect called lipotoxicity. Their work focused on endocannabinoids, endogenous lipid ligands that interact with the cannabinoid-1 receptor (CB1R), which is abundantly expressed in the brain and periphery, including the kidney.

When the team fed mice a high-fat diet, animals that lacked expression of the CB1R in RPTCs experienced significantly less obesity-induced lipid accumulation in the kidney as well as less kidney injury. "Using a novel mouse strain that lacks the CB1R from the RPTCs, we were able to demonstrate its pivotal role in the development of renal inflammation, fibrosis, and dysfunction during obesity," said Dr. Tam.

Additional experiments revealed the molecular signaling pathway involved in mediating the CB1R-induced kidney injury and lipotoxicity in RPTCs. Specifically, these deleterious effects associated with decreased activation of liver kinase B1 and the energy sensor AMPK, as well as reduced fatty acid β-oxidation.

"Ultimately, this was a very interesting paper that is building on our understanding of a new metabolic pathway in kidney injury," said Adam Whaley-Connell, DO, who was not part of the study and is a nephrologist and associate professor at the University of Missouri School of Medicine. "There are a number of studies that suggest the endocannabinoid system regulates proximal tubule function from mouse models to humans in diabetes; however, this current paper highlights the pathway may be regulated to a great extent by fat feeding and is an important regulator of lipid accumulation, fatty acid oxidation, and the AMPK mechanism that contributes to fibrosis in the kidney. In the search for new therapeutic targets this paper provides an intriguing new mechanism in obesity and/or diabetic kidney disease."
37,500 patients.
2 dialyzers.
1 result.

The numbers are compelling. In a large-scale retrospective, observational study (N=37,500), REVACLEAR Dialyzer was associated with up to 600 fewer units of ESA with a median of 275 fewer units used per hemodialysis session compared with Optiflux 160 and 180 dialyzers (p<0.05).

To learn more contact your local Baxter sales representative.

For the full study, visit pubmed.gov and search for study 27442860.
October/November 2017 | ASN Kidney News | 3

The Intersection of Basic Science and Clinical Care: The Future of Personalized Nephrology

Early Programs
ASN offers 10 Early Programs on Tuesday, October 31, and Wednesday, November 1, preceding the Annual Meeting (November 2–5). New Early Programs address several important areas of study:

- **Precision Medicine in Renal Diseases (Advances in Research Conference)** Critical advances in molecular and clinical medicine illuminate comprehensive genetic, molecular, structural, and clinical aspects of diseases. Learn about the latest strategies to integrate these multi-scalar data sets to define mechanisms that cut across knowledge domains and propel innovative approaches in novel clinical trials.

- **Advancing Clinical Research in Nephrology: Approaches and Methods** Epidemiology, clinical trials, and qualitative research define modern clinical investigation. Learn about innovative approaches to data acquisition, stakeholder engagement, systems biology, precision medicine, implementation science, the role of patient-reported outcomes and qualitative research, as well as fundamental concepts of clinical research.

- **The Dialysis Infection Crisis in the United States: A Call to Action** Nephrologists play a critical role as team leaders in transformational change required to address the urgent need to improve infection control in US dialysis facilities. This interactive program focuses on improving the safety of life-sustaining dialysis, protecting patients and health care personnel. Tools and education efforts will enable nephrologists to lead the pursuit of zero preventable infections.

- **What You Need to Know about Diabetes and Diabetic Kidney Disease** This program addresses the background epidemic of diabetes mellitus, the pathophysiology of diabetic CKD, current approaches to diabetic CKD and hypertension, new drugs in development, the growing use of hypoglycemic agents in diabetic CKD, and unique dialysis and transplant problems facing patients with ESRD due to diabetes.

ASN Communities Lounge
Thursday, November 2, to Saturday, November 4, 9:30 a.m.–2:30 p.m.
The new ASN Communities Lounge extends the exciting professional network that is expanding daily through online ASN Communities. Visit and connect with those working in your area of study, or working in areas you want to know more about. The lounge is located in the exhibit hall and features:

- ASN Community Leaders
- Central Connectivity Bar
- Meeting Quads
- Relaxation Zone

Stop by booth 917 to explore the ASN Communities world and enhance your Kidney Week experience.

In addition to the new items above, don’t forget to check out these events:

- Welcome Reception in the exhibit hall on Thursday, 6:30–7:30 p.m.
- Daily state-of-the-art lectures during the plenary sessions (Thursday–Sunday, 8:00–9:30 a.m.)
- Daily poster presentations with more than 3000 posters (Thursday–Saturday, 9:30 a.m.–2:30 p.m.)

Basic science and clinical research advances patient care. Submit your innovative ideas and research plans to the following programs funded by the ASN Foundation for Kidney Research.

ASN Foundation for Kidney Research
Time for a Cure

Submit Applications for Research Funding
The deadline to apply is Wednesday, December 6, 2017 at 2:00 p.m. EST.

ASN Pre-Doctoral Fellowship Award Program provides support for PhD students to conduct kidney-related research with guidance from a mentor.

Ben J. Lipps Research Fellowship Program provides funding to nephrology fellows for original and meritorious research conducted under the guidance of a sponsor.

Career Development Grants Program helps new investigators conduct independent research.

William and Sandra Bennett Clinical Scholars Program provides support for a clinician-educator to conduct a project to advance all facets of nephrology education and teaching.

For details and online applications, please visit the ASN website, www.asn-online.org/grants/.
Obesity
Continued from page 1

According to Dr. Tam, the work provides a novel approach to slow the development of renal injury through chronic blockade of peripheral CB1Rs. “And, it also supports strategies aimed at reducing the activity of the endocannabinoid system, specifically in the kidney, to attenuate the development of RPTC dysfunction in obesity.”

Allon Friedman, MD, who was not involved with the work and is a nephrologist and clinical investigator at Indiana University School of Medicine, noted that the intimate connection between rising rates of obesity and chronic kidney disease makes it likely that this topic will become increasingly prominent in the coming years. “These intriguing animal studies expand our understanding of how endocannabinoid physiology influences kidney health,” he said. “The next step will be to extend these findings in humans through the testing of endocannabinoid receptor antagonists.” In his 2011 Kidney News article, Dr. Friedman pointed to other possible factors, including alterations in levels of adipocyte-related cytokines such as leptin and adiponectin (as well as other hormones) and upregulation of the renin-angiotensin axis and sympathetic nervous system activity. Many unanswered questions remain surrounding both the causes of obesity-related kidney disease and its optimal treatment.

Visceral Fat Is Linked to Inflammation in Dialysis Patients, While Subcutaneous Fat Marks Nutritional Status

In dialysis patients, visceral fat is a marker of inflammation while subcutaneous fat is a marker of nutritional status, suggests a study in American Journal of Kidney Diseases.

The cross-sectional study included 609 adult hemodialysis patients enrolled in the US Renal Data System’s ACTIVE/ADIPOSE study. Participants underwent several measurements: body mass index (BMI), waist circumference as an indicator of visceral fat, and percentage body fat as an indicator of subcutaneous fat. The two fat measures were evaluated for association with markers of inflammation, nutrition, and adiposity-related hormones.

Body mass index was directly related to the inflammatory markers C-reactive protein and interleukin-6 (IL-6), but not with markers of nutrition, i.e., prealbumin or albumin. BMI was inversely associated with adiponectin and directly related to leptin. In a model including these markers, waist circumference was indirectly related to adiponectin and directly related to leptin.

Dialysis patients with BMI higher than the normal range generally have a higher survival rate, a phenomenon called the “obesity paradox,” which has confounded researchers and practitioners. Yet BMI is a general marker of adiposity, and does not distinguish between subcutaneous and visceral fat, which may have differing metabolic and inflammatory characteristics. Determining the type of fat—visceral or subcutaneous—may help unravel the obesity paradox, but longitudinal studies are needed to clarify the associations between measures of body fat and markers of inflammation.

Added to previous findings, the results of this cohort study of dialysis patients suggest that “higher subcutaneous fat may account for the observed survival advantage associated with higher BMI.”

Operating as a Fresenius Medical Care North America company since 2001, Frenova is your only Phase I-IV contract clinical development partner dedicated exclusively to renal research. No other research partner works with a more intimate understanding of patients affected by kidney disease and its comorbid conditions than we do. When you need to conduct a complete renal clinical program, trust the partner that’s completely renal — Frenova Renal Research.

- Phase I-IV clinical research
 - Protocol design and feasibility development
 - Project management
 - Site selection, start-up, monitoring and auditing
 - Regulatory services
 - Central laboratories

- 450+ principal investigators
- 260+ dialysis research sites
- 183,000+ active ESRD patients

- Historical data on 980,000+ dialysis patients and nearly 400,000 CKD patients
- Exceptional resource for assessing protocol feasibility and patient enrollment strategies
Challenges

1. Transformation of the health care system and the practice of nephrology:
The systemwide transformation of US and global health care means providers are increasingly accountable for clinical outcomes as well as the total costs of care. Nephrologists need to be leaders in this transformation, which will impact them in all of the realms in which they practice: dialysis facilities, offices, and hospitals. While individual nephrologists and practices will be differentially affected by this transformation, all will be affected to some extent and need to be prepared to thrive in the new world of care delivery and reimbursement/payment systems.

2. Where nephrologists and kidney care providers fit in the new health care system:
Nephrologists and kidney care providers will be at the forefront of the new health care system because of the disproportionate cost of advanced CKD and ESRD patients. Innovative solutions for improving care and controlling costs are needed. Going forward, nephrologists and dialysis providers will need to work together to ensure that these solutions are identified, tested, and implemented. Nephrologists will have more options regarding their clinical work environment, with an increasing number likely to find salaried positions with health systems, integrated health care organizations, physician groups, hospitals, or dialysis providers. Career advancement programs need to be broadened to inform nephrologists of the benefits and pitfalls of these options.

3. The critical role of health information technology:
Integral to the success of integrated care is the ability to seamlessly share patient information through electronic health records (EHRs). Nephrologists often use multiple EHRs in the different settings in which they practice and are perhaps more aware of the need for seamless integration of these information systems than other physicians. Nephrologists need to lead the design of more usable systems and algorithms to enhance sharing of information in real-time fashion, an effort that should include interoperability, a common lexicon, and agreed-upon metrics and business rules so meaningful use of the massive amount of available data is possible.

4. Influence of regulatory oversight and public data on patient care:
There is a need for increasing rigor in the development and selection of quality metrics to ensure they have an impact on the quality of patient care. Oversight of quality in the payment system through the Quality Improvement Program has been one of the primary approaches by the Centers for Medicare & Medicaid Services (CMS), but further refinement of QIP measures and methods used to calculate them needs to be informed by evidence, sound methodology, and in the future include patient-reported outcomes. By engaging in the research and development of such accountability systems, nephrologists can lead the development of important quality measures rather than waiting for CMS to dictate them. Nephrologists may act as individuals and through professional organizations such as ASN and the Renal Physicians Association (RPA), as well as through national coalitions such as Kidney Care Partners, Kidney Care Coalition, and the National Renal Administrators Association (NRAA).

Nephrologists must be active advocates for patients and for the discipline of nephrology. Accountability should be an area developed and structured through the discipline, not by regulators.

5. The nephrology workforce:
Care of patients with kidney diseases and kidney failure will be dependent on teams including nurses (RN and NPs), social workers, care coordinators, patient care navigators, health coaches, patient care technicians, clinical specialists (e.g., podiatrists, cardiologists, endocrinologists, vascular surgeons), insurance/benefit experts, and others who focus on social determinants of health, such as housing, nutrition, transportation, and employment. Another aspect of integrated team-based care is improved palliative care for symptom management during life care at the end of life. The nephrologist needs to be the leader and coordinator of this team.

The lack of interest in nephrology careers among medical students and residents will make it difficult to reach sufficient numbers and quality of nephrologists to meet needs spanning clinical care and administrative functions. Attracting more trainees to nephrology requires changing the approach to teaching the discipline. Too often the emphasis on basic physiology does not “connect the dots” with the implications of organ dysfunction leading to the many manifestations of CKD and ESRD that patients exhibit and that make the specialty so fascinating yet complex. Students and residents must be exposed to outpatient CKD management and to care of dialysis and transplant patients outside the inpatient setting. In this way the successful and rewarding outcomes of kidney patient care are better conveyed. Articulating the leading role of nephrology in defining and implementing value-based care, palliative care, and driving public policy should also attract talented trainees who are looking for new career paths.
Opportunities

Integrated care and the ideal role of the nephrologist: The nephrologist’s role varies depending on the site of focus of care. A nephrologist acting as a dialysis facility medical director serves as the population health leader and plays an additional role as the principal care provider for each patient for whom they are responsible. This role is distinct from primary care, and training programs need to educate nephrologists about these distinctions. Outside the dialysis facility the nephrologist is now likely to be even more involved in care coordination, particularly with the advent of MACRA, which created incentives to participate in such programs, including Advanced APMs. An Alternative Payment Model (APM) is a payment approach that gives added incentive payments to provide high-quality and cost-efficient care. APMs can apply to a specific clinical condition, a care episode, or a population. Advanced APMs are a subset of APMs, and let practices earn more for taking on some risk related to their patients’ outcomes. Nephrologists earn a 5% incentive payment by going further in improving patient care and taking on risk through an Advanced APM.

There is a need for greater opportunities for nephrologists to access APM models of care such as the ESCO program, where essentially all involved providers have been classified as qualifying providers for their participation in the program, providing an opportunity for nephrologists to align financial incentives with clinical imperatives. Nephrologists must understand the impact of non-traditional adjacent diseases, other medical conditions, or social circumstances on health outcomes of kidney patients. To do so, nephrologists must be more involved in the overall assessment and care of patients, performing as the principal care physician. Training of nephrologists must change to prepare them for this new role. As physician training has transitioned to greater emphasis on outpatient care, so must nephrology training. This shift requires a partnership among kidney care providers, nephrology fellowship training programs, and ASN to facilitate a larger clinical and administrative role for trainees in dialysis units.

Innovation in the kidney space: Bundling of payments for dialysis—and the resulting uncertainty about reimbursement potential for new products—has had a chilling effect on pharmaceutical and medical device companies’ interest in pursuing new therapies for kidney patients. But the advent of integrated care systems for kidney patients has fostered a more recent renewal of interest in innovation. In integrated care settings, any innovation that creates value generates interest: A more expensive dialyzer is a valuable investment if the result is a healthier patient who lives longer and does not require hospitalization. Removing regulatory barriers to innovation is an important driver of innovation for the future.

Opportunities

Improving care for patients with CKD:

Few patients with advanced CKD (GFR <45) know they have kidney disease, yet there is no systematic approach to population health for the identification, prevention, early diagnosis, and better management of patients with CKD. No reimbursement mechanism exists to incentivize or support such a comprehensive program. Nephrologists know that working upstream in the continuum of CKD is essential for improving clinical outcomes and lowering total costs of care. A joint effort is needed on the part of nephrologists and the kidney community (particularly ASN, the Renal Physicians Association, and the National Kidney Foundation) to develop a CKD prevention, early detection, and management program, including advocating for reimbursement (including shared savings) by CMS and commercial insurers. Integration of care among various providers will lead to more opportunities for nephrologists to have an impact on this population and slow the progression of CKD.

Improving care for patients with acute kidney injury: Kidney health providers are now treating a larger number of patients with AKI in outpatient facilities. It is essential that we recognize that a patient with AKI has different needs than a patient with ESRD. In a collaborative partnership, nephrologists and providers need to work on a better model of care for patients with AKI, with the primary goal of recovering kidney function where possible or preparing for chronic renal replacement therapy (RRT) when necessary. Sharing of best practices will inform the development of an improved model of care for AKI patients. ASN can play a critical role in sharing what we are learning to a broader audience.

Improving access to home dialysis: Most nephrologists and clinicians would choose home dialysis for themselves, yet few patients on dialysis are able to benefit from dialysis at home. A patient dialyzing at home has more autonomy, is more likely to continue to work, and has more satisfaction in their kidney care. Nephrologists and other providers should work together to identify opportunities to make it more likely that patients can dialyze at home. They should rethink curriculum structure and requirements for training and competence in home dialysis because many training programs do not have a sufficiently large home dialysis program to adequately train fellows. In addition, as recent events have illustrated, availability of adequate supplies to carry out home dialysis and lack of innovation in delivery systems has hampered the further growth of these modalities.

Increasing access to kidney transplant: Most agree that transplant is the optimal therapy for patients with kidney failure who are medically suitable. Yet few patients benefit from this care approach because only 10% of patients with kidney failure receive a preemptive transplant as treatment; the remaining 90% get dialysis. We need to emphasize transplantation as a care modality for patients with ESRD and ensure nephrologists view it this way. Nephrologists, organ procurement organizations, transplant programs, and kidney health providers should work together to help nephrologists see the potential to improve access to transplantation through both living and deceased kidney donation. Several areas could be significantly improved by such a collaborative approach including evaluation expectations, waitlist management, better utilization of kidneys with high KDPI scores, health information exchange around transplant, desensitization, and preparing the recipient with a failing transplant for return to RRT. An incentive system for nephrologists could be developed and implemented to encourage transplantation, and research efforts such as (Re)Building a Kidney (an NIDDK-supported consortium) to expand the capacity for biological kidney replacement must be supported. Approximately 100,000 patients are on the transplant waitlist, yet only 17,000 kidney transplants are performed annually, resulting in an unacceptably long wait and unnecessary morbidity and mortality.

Improving end-of-life care: Patients over 80 with multiple comorbidities have comparable outcomes if they receive comprehensive conservative care instead of dialysis. Yet few choose this option, partly owing to the dearth of nephrologist training in non-dialytic and palliative care. Patients on dialysis at the end of life utilize hospice much less frequently than other patients with similar comorbidities and cost of care. Nephrologists and other providers should work together to improve end-of-life, both for patients with CKD and for patients on dialysis. ASN could explore curricula elements that inform nephrology trainees about medical strategies that extend the duration and quality of life without dialysis.

Informed choice for patients with kidney disease: Kidney patients need to be assured they have full access to options regarding their care including transplantation, home or in-center dialysis, and conservative therapy. This need also extends to patients’ ability to choose integrated care plans, Medicare Advantage plans, or maintenance of private insurance (including the use of charitable premium assistance where appropriate) when it is in their best interest.

Promoting innovation in CKD and ESRD care: A focused concern on continuous innovation in the care of patients with kidney disease is needed. There should be strong support for the existing vehicles for developing innovative approaches to improving outcomes, but also efforts to advance basic science understanding of CKD and ESRD and pragmatic solutions to care delivery and financing problems. Examples of existing programs are the Kidney Health Initiative, CMMI special projects, Nephrologists Transforming Dialysis Patient Safety, and the Center of Dialysis Innovation. More such programs are needed.

Additional specific areas of focus given a high priority by the CMOs include the following:

a. Revisiting the definition of “adequate” dialysis.

b. Defining evidence-based criteria for alternative dialysis regimens.

c. Optimizing the use of self-care modalities.

d. Defining, utilizing, and harmonizing meaningful quality metrics that reflect care that is relevant and important to patients.

Achieving the goals stated here will require a close working relationship among kidney health care providers, nephrologists, and nephrology fellowship training programs. By establishing a closer partnership, kidney care provider CMOs and ASN can build toward a stronger future for providers, nephrologists, and patients. An important aspect of this link is the establishment of a committee of representatives of both groups with the aim of enhancing career development for early career nephrologists and nephrology trainees. Such a program should aim to enhance skills in the clinical management of patients with advanced CKD, foster a better understanding of the financial and legal impacts of the changing health care system, and improve opportunities for research in quality metrics and improvement. We are currently at a time of rapidly accelerating change in American health care, and the care of kidney patients is at the forefront of this ongoing transformation. The movement to value-based care offers challenges to our discipline but the clear opportunity to significantly improve the care and lives of patients with kidney diseases. The CMOs are interested in strengthening our collaboration with ASN. Possible opportunities to increase collaboration include:

a. Regular meetings of ASN leadership and kidney care providers.

b. Definition of a common set of issues to be addressed jointly.

c. Exploration of how the kidney care organizations can assist ASN in reaching out to potential nephrology trainees.

d. Exploration of how the kidney care organizations can assist ASN in ensuring that trainees have access to the necessary training in CKD and ESRD patient care that will likely be the focus of practice for many.

e. Serving on the ASN Career Advancement Committee.

f. Contributing to the planning process for ASN Kidney Week.

g. Partnering to work with CDC, including the efforts of the Healthcare Infection Control Practices Advisory Committee.
he more things stay the same, the more the things change—or, at least, the more things need to change. That may be turning an old adage on its head, but turning things upside down seems to capture events since the last report on the state of kidney care in 2016.

For things to stay the same is not an acceptable state in nephrology, considering there are an estimated 40 million Americans living with kidney diseases and for nearly 700,000 of those individuals access to dialysis or a kidney transplant is their only chance to live. With a life expectancy of 5 to 10 years on dialysis, our patients with kidney failure must come to terms with the national organ shortage crisis: every 14 minutes a patient is added to the kidney wait list and every day, 13 patients die waiting for a kidney transplant.

These numbers are unacceptable, and we must be willing to say so.

As a chair of medicine at Mt. Sinai, member of the American Society of Nephrology (ASN) Council, and a transplant nephrologist/immunologist, I can say clearly and unequivocally, we need to “get real” when talking about kidney diseases; the devastating toll on patients, their families, and caregivers in the United States and across the globe; and the challenges we face confronting this epidemic. Where there is change, some is good and some is less so. ASN supports the move away from a volume-based to a quality-based payment system in the new Quality Payment Program (QPP). The growth of alternative payment models (APMs) and the testing of physician-focused payment models under the QPP may well provide innovative approaches to care and less strenuous reporting requirements for clinicians.

However, the QPP is still a new, evolving program that has a way to go to address the needs of nephrologists reporting in the Merit-based Incentive Payment System (MIPS) as there are fewer nephrology-specific quality measures in the quality category and literally no nephrology-specific measures in the cost category—two of the four reporting categories that determine whether clinicians will see a bonus or a pay cut.

In the last year, Congress has considered significant changes to health care in the name of “repeal and replace” of the Affordable Care Act, generally without much debate or input from stakeholder groups. This changing environment has left health care professionals, insurers, and patients concerned and weary. ASN has worked with peer societies to preserve important policies, with varying results: access to Medicare remains in place and patients cannot be denied insurance coverage for “pre-existing conditions” like kidney disease or having donated a kidney—but improvements to the existing law are clearly needed.

Moreover, the big picture changes needed in nephrology are going to require us to be the agents of change. It is time for us to decide whether we are up to the challenge so eloquently expressed by James Baldwin: “Not everything that is faced can be changed, but nothing can be changed until it is faced.”

As the chief medical officers (CMOs) observe, the challenges ahead are multitudinous—touching on a transforming health care system and the role of the nephrologists in that system, the role of both government regulators and health information technology, and the need for innovation in kidney care therapies and kidney care delivery models. ASN and the CMOs also see similar opportunities in this evolving environment. A great deal of opportunity exists to improve care for patients across the kidney care spectrum: kidney diseases, acute kidney injury (AKI), kidney failure, transplantation, and end-of-life care.

And while we need innovation in both therapies and care delivery, too often it is easier to use the lack of innovation in kidney care as an excuse. We need to get patients into our care earlier, identify reversible conditions early, and more aggressively manage their conditions, while simultaneously working to identify new therapies.

ASN is also wrestling with how best to articulate the role of nephrology and the nephrologists during this transformative period. Since kidney patients often present multiple comorbidities and their care cross-cuts multiple medical disciplines, it is sometimes challenging to clearly articulate what a commonly agreed upon role for nephrology and its clinicians should be. In an era of evolving care models, ASN agrees with the CMOs that it is very important that nephrologists find their voice and express their role and value. This demonstration is critical to demonstrating the value of including nephrologists in care models.

Innovation must occur if we are to impact the current epidemic, that much is very clear. We cannot rationalize the value of nephrology as an essential part of the care plan for kidney diseases if the status quo is maintained. The lack of new therapeutic approaches will lead to the stagnation of the specialty and continued decline in interest from fellow candidates.

Recognizing the relative lack of innovation and new therapies in nephrology compared to other medical specialties, ASN launched the ASN Innovation and Discovery Task Force this summer. This task force is instrumental to achieving the second goal of the ASN Strategic Plan: “Transform kidney research through discovery and innovation to prevent, treat, and cure kidney diseases.”

The task force has reviewed ASN’s portfolio of current activities as well as external initiatives such as accelerator concepts that offer financial and other incentives to identify, select, and accelerate a portfolio of solutions. The task force also has examined venture philanthropy, which takes concepts and techniques from venture capital finance and business management and applies them to early stage funding for biotechnology and pharmaceutical companies to develop breakthrough drugs. These and other programs conducted by peer medical societies, patient organizations, foundations, and other innovators are among those the task force is reviewing.

With innovations in kidney therapies, there also comes a need for innovation in care delivery—including preemptive transplantation, increased access to home dialysis and telemedicine, and comprehensive care models. In care delivery, as clinicians, we know how dangerous transitions can be, whether from the hospital to the dialysis unit, or onto dialysis in the first place, or from dialysis to treat AKI onto maintenance dialysis for kidney failure, to name just a few.

The ASN leadership and I believe that a comprehensive kidney care delivery model could be much broader than an ESRD Seamless Care Organization (ESCO)—encompassing patients with advanced kidney diseases and including kidney transplant recipients, coordinating their transitions as their conditions progress, and managing and slowing progression of kidney diseases and other complex chronic conditions that are common in the kidney patient population.

Reflecting the fact that transplantation is, for many patients, the optimal therapy for kidney failure, such a care delivery model would include transplant recipients for the duration of their lives, providing continuity of care and aligning incentives. A comprehensive kidney care delivery model would present a unique opportunity to provide better, more cost-effective, and more patient-centered care than is possible under the current delivery system. ASN and nephrologists must better quantify their value and health care system savings. In a value-based system, not being able to quantify your value is a losing proposition. With Medicare spending $103 billion annually on kidney patient care (including $32.8 billion on care for beneficiaries with ESRD), those striking statistics might appear to be sufficient quantification, but looking at society’s complacency with the current environment suggests it is not.

Instead, the kidney community and nephrologists must begin to demonstrate that coordinated, team-based care that actively involves the nephrologist in the management of patients with kidney disease is an opportunity for cost savings within health care systems. We know firsthand that these patients represent some of the highest utilizers of resources in at-risk care models, and it will take our involvement and commitment to address ways to reduce those demands while providing our patients with the best care possible.

There are multiple areas of potential collaboration for CMOs and ASN from working on creative care models to advancing opportunities for innovation, all with the nephrologist voice and what’s best for patients front and center. ASN welcomes the opportunity to work with CMOs and other kidney community members. There is much work to be done and more hands, hearts, and heads are welcome.

Barbara Murphy, MD, FASN, is a member of ASN Council and Council liaison to the ASN Policy and Advocacy Committee. She is affiliated with the Icahn School of Medicine at Mount Sinai in New York City.

David White is a Policy and Communications Specialist at ASN.
Indication and Usage
VELTASSA is indicated for the treatment of hyperkalemia. Limitation of Use: VELTASSA should not be used as an emergency treatment for life-threatening hyperkalemia because of its delayed onset of action.

Important Safety Information
Contraindications: VELTASSA is contraindicated in patients with a history of a hypersensitivity reaction to VELTASSA or any of its components.

Worsening of Gastrointestinal Motility: Avoid use of VELTASSA in patients with severe constipation, bowel obstruction or impaction, including abnormal post-operative bowel motility disorders, because VELTASSA may be ineffective and may worsen gastrointestinal conditions. Patients with a history of bowel obstruction or major gastrointestinal surgery, severe gastrointestinal disorders, or swallowing disorders were not included in clinical studies.

Hypomagnesemia: VELTASSA binds to magnesium in the colon, which can lead to hypomagnesemia. In clinical studies, hypomagnesemia was reported as an adverse reaction in 5.3% of patients treated with VELTASSA. Approximately 9% of patients in clinical trials developed hypomagnesemia with a serum magnesium value <1.4 mg/dL. Monitor serum magnesium. Consider magnesium supplementation in patients who develop low serum magnesium levels.

Adverse Reactions: The most common adverse reactions (incidence ≥2%) are constipation, hypomagnesemia, diarrhea, nausea, abdominal discomfort and flatulence. Mild to moderate hypersensitivity reactions were reported in 0.3% of patients treated with VELTASSA and included edema of the lips.

Please see Brief Summary of Prescribing Information on following page, and full Prescribing Information at VELTASSAhcp.com.
Anti-inflammatory therapy with canakinumab—targeting the interleukin-1β (IL-1β) innate immunity pathway—reduces cardiovascular events in patients with previous myocardial infarction (MI), reports a trial in The New England Journal of Medicine.

The industry-sponsored “Canakinumab Antiinflammatory Thrombosis Outcome Study” (CANTOS) enrolled 10,061 adults with a history of MI. All had a persistent proinflammatory response, with high-sensitivity C-reactive protein of 2 mg/L or higher. Patients were randomly assigned to receive canakinumab every 3 months, 50, 150, or 300 mg sc; or placebo. Rates of nonfatal MI or stroke or cardiovascular death were compared between groups. All three canakinumab doses reduced high-sensitivity C-reactive protein, with no effect on lipid levels. Primary outcome incidence rates at 3.7 years of follow-up were 4.50 events per 100 person-years in the placebo group, 4.11 events with canakinumab 50 mg, 3.86 events with the 150 mg dose, and 3.90 events with the 300 mg dose. Hazard ratios compared to placebo were 0.80 (not significant), 0.85, and 0.86, respectively.

A prespecified analysis combined the primary outcome with a secondary end-point of hospitalization for unstable angina leading to urgent revascularization. For the composite outcome, only canakinumab 150 mg was superior to placebo: hazard ratio 0.83. All-cause mortality was not significantly different for canakinumab versus placebo. Rates of neutropenia and death from infectious or sepsis were higher with canakinumab.

This clinical trial supports the hypothesis that treatment to reduce inflammation but not lipid levels can reduce cardiovascular events in patients with previous MI. Other approaches to anti-inflammatory therapy might also be effective in lowering cardiovascular risks. Anti-IL1β therapy with canakinumab is associated with an increased risk of serious infections and sepsis [Ridker PM, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; DOI: 10.1056/NEJMoa1707914].

Key Points
- Canakinumab reduces cardiovascular events in patients with previous MI.
- The lowest dose (150 mg) was the most effective.
- High doses of canakinumab were associated with increased risk of serious infections and sepsis.

Table 1: Adverse Reactions Reported in ≥ 2% of Patients

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>Patients treated with VELTASSA (N=666)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>7.2%</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>5.3%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4.8%</td>
</tr>
<tr>
<td>Nausea</td>
<td>2.3%</td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>2.0%</td>
</tr>
<tr>
<td>Flatulence</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

During the clinical studies, the most commonly reported adverse reactions leading to discontinuation of VELTASSA were gastrointestinal adverse reactions (2.7%), including vomiting (0.8%), diarrhea (0.6%), constipation (0.5%) and flatulence (0.5%). Mild to moderate hypersensitivity reactions were reported in 0.3% of patients treated with VELTASSA in clinical trials. Reactions have included edema of the lips. Laboratory Abnormalities Approximately 4.7% of patients in clinical trials developed hypomagnesemia with a serum potassium value < 3.5 mEq/L. Approximately 9% of patients in clinical trials developed hypomagnesemia with a serum magnesium value < 1.4 mg/dL.

USE IN SPECIFIC POPULATIONS

Pregnancy

Risk Summary

VELTASSA is not absorbed systemically following oral administration and maternal use is not expected to result in fetal risk.

Lactation

Risk Summary

VELTASSA is not absorbed systemically by the mother, so breastfeeding is not expected to result in risk to the infant.

Pediatric Use

Safety and efficacy in pediatric patients have not been established.

Geriatric Use

Of the 666 patients treated with VELTASSA in clinical studies, 59.8% were age 65 and over, and 19.8% were age 75 and over. No overall differences in effectiveness were observed between these patients and younger patients. Patients age 65 and older reported more gastrointestinal adverse reactions than younger patients.

Renal Impairment

Of the 666 patients treated with VELTASSA in clinical studies, 93% had chronic kidney disease (CKD). No special dosing adjustments are needed for patients with renal impairment.

OVERDOSAGE

Doses of VELTASSA in excess of 50-64 grams per day have not been tested. Excessive doses of VELTASSA may result in hypokalemia. Restore serum potassium if hypokalemia occurs.

PATIENT COUNSELING INFORMATION

Drug Interactions

Advise patients who are taking other oral medications to separate the dosing of VELTASSA by at least 3 hours (before or after) [see Drug Interactions].

Dosing Recommendations

Inform patients to take VELTASSA as directed with food and adhere to their prescribed diets. Inform patients that VELTASSA should not be used as an emergency measure for treating hyperkalemia.

Limitation of Use:

VELTASSA is contraindicated in patients with a history of a hypersensitivity reaction to VELTASSA or any of its components [see Adverse Reactions].

WARNINGS AND PRECAUTIONS

Worsening of Gastrointestinal Motility

Avoid use of VELTASSA in patients with severe constipation, bowel obstruction or impaction, including abnormal post-operative bowel motility disorders, because VELTASSA may be ineffective and may worsen gastrointestinal conditions. Patients with a history of bowel obstruction or major gastrointestinal surgery, severe gastrointestinal disorders, or swallowing disorders were not included in the clinical studies.

Hypomagnesemia

VELTASSA binds to magnesium in the colon, which can lead to hypomagnesemia. In clinical studies, hypomagnesemia was reported as an adverse reaction in 5.3% of patients treated with VELTASSA [see Adverse Reactions]. Monitor serum magnesium. Consider magnesium supplementation in patients who develop low serum magnesium levels on VELTASSA.

ADVERSE REACTIONS

The following adverse reaction is discussed in greater detail elsewhere in the label:

- Hypomagnesemia [see Warnings and Precautions]

Cosmetic analogue Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of VELTASSA cannot be directly compared to rates in the clinical trials of other drugs and may not reflect the rates observed in practice. In the safety and efficacy clinical trials, 666 adult patients received at least one dose of VELTASSA, including 219 exposed for at least 6 months and 149 exposed for at least one year. Table 1 provides a summary of the most common adverse reactions (occurring in ≥ 2% of patients) in patients treated with VELTASSA in these clinical trials. Most adverse reactions were mild to moderate. Constipation generally resolved during the course of treatment.

Chronic HCV Linked to Higher CKD Risk

Chronic hepatitis C virus (HCV) infection is associated with an increased risk of chronic kidney disease (CKD), with the extent of risk depending on viral load and genotype, reports a study in *Kidney International*.

The researchers analyzed data on 13,805 Taiwanese adults from a prospective, community-based cohort study. Mean age at enrollment was 47.5 years. Based on detectable HCV load, 431 patients had chronic HCV infection. Chronic HCV infection, viral load, and phenotype were evaluated for association with CKD, defined as consecutive proteinuria or an estimated glomerular filtration rate of less than 60 mL/min/1.73 m². Subjects with chronic HCV infection had about a twofold increase in CKD: adjusted prevalence odds ratio (POR) 1.91. Risk was highest for chronically infected patients in the highest tertile of serum HCV RNA: POR 3.44.

Among participants with high HCV viral load, PORs were 2.62 for those with HCV genotype 1 and 4.99 for those with genotype 2. On subanalysis including only those with detectable serum HCV RNA, the risk of CKD was about three times higher for those with genotype 2 versus genotype 1. There is debate over the association between HCV and CKD. Taiwan is an area endemic for HCV and has the highest prevalence of kidney failure worldwide.

This cross-sectional study suggests that chronic HCV infection is an independent risk factor for CKD in Taiwan. Kidney disease risk is particularly high for patients with high HCV viral load and/or HCV genotype 2. The authors call for a prospective study to clarify whether HCV viral load and genotype are associated with an increased likelihood of developing CKD and kidney failure [Lai T-S, et al. High hepatitis C viral load and genotype 2 are strong predictors of chronic kidney disease. *Kidney Int* 2017; 92:703–709].
Tradeoffs in Medication Adherence after Acute Myocardial Infarction Confer Different Mortality Risks

For patients with acute myocardial infarction, nonadherence to beta blockers doesn’t reduce mortality—as long as they are taking their prescribed angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEIs/ARBs) and statins, reports a study in the *Journal of the American College of Cardiology*.

The researchers analyzed “tradeoffs in adherence” to multiple preventive therapies using data on nearly 91,000 Medicare beneficiaries aged 65 or older with acute myocardial infarction between 2008 and 2010. All patients survived at least 180 days after being hospitalized for acute myocardial infarction and received prescriptions for ACEIs/ARBs, beta blockers, and statins.

Medicare Part D prescription claims were used to analyze adherence to the three classes of drugs, and adherence was defined as at least 80% of days covered for each medication. Mortality was compared for patients who were adherent to none, one, two, or all three medications. Follow-up for mortality continued for 18 months after the 180-day postdischarge period.

Overall, 51.5% of patients were nonadherent to at least one of the three medications: 30.7% were nonadherent to ACEIs/ARBs, 25.8% to beta blockers, and 23.0% to statins. During mean follow-up of about 1 year, 10.6% of patients died. Adjusted mortality was 9.3% for patients adherent to all three medications, compared to 14.3% for those nonadherent to all three therapies.

About 9% of patients were adherent to ACEIs/ARBs and statins, but not beta blockers. In this group of patients, mortality was not significantly different from that for those who were adherent to all three medications. Adjusted hazard ratios for mortality were 1.65 for those nonadherent to all three therapies, 1.32 for those adherent to beta blockers only, and 1.26 for those adherent to statins only. For those adherent to ACEIs/ARBs only, the adjusted hazard ratio was 1.19; 1.17 for those adherent to beta blockers and statins only, and 1.12 for those adherent to ACEIs/ARBs and beta blockers only.

The benefits of adherence to ACEIs/ARBs were greater in patients with diabetes on subgroup analysis. In contrast, the directions of the associations were generally similar in other subgroups. The effects of adherence tradeoffs tended to be larger in men than women and in older compared to younger patients.

Suboptimal adherence to secondary preventive therapies after acute myocardial infarction is well documented. Few clinical trial data are available to guide the balance of risks and benefits of these medications, particularly in older adults taking many different prescrections.

The new findings confirm that only about half of older adults are adherent to all three recommended medications after acute myocardial infarction. Those who are adherent to ACEIs/ARBs and statins show no significant reduction in one-year mortality, compared to those adherent to all three medications. All other nonadherence groups show increased mortality risks.

“[L]ong-term adherence to ACEIs/ARBs and statins may be more important than adherence to beta blockers after acute myocardial infarction,” the investigators conclude. They emphasize the need for further studies to clarify the clinical implications of their findings [Korhonen MJ, et al. Adherence trade-off to multiple preventive therapies and all-cause mortality after acute myocardial infarction. *J Am Coll Cardiol* 2017; 70:1543-1554].

Iron-deficiency anemia in CKD is different.

Is it time for a new school of thought?

In CKD, progressive loss of renal function along with chronic inflammation leads to:

- High concentrations and reduced clearance of hepcidin
- Impaired intestinal iron absorption
- Restricted release of iron from storage

Can different thinking help us address these challenges for iron-deficiency anemia in CKD?

To improve the standard of care for kidney patients worldwide, the societies are currently collaborating in three areas: using high-impact data to communicate the kidney disease pandemic, comparing realities across the global nephrology workforce, and prioritizing ethical issues confronting nephrologists around the world.

WIN-ASN Career Advancement Webinars Available Online

Women in Nephrology (WIN) and ASN launched free professional advancement webinars that offer advice on directing or adjusting career pathways and negotiating to advance career goals. The webinars offer real-world advice from successful nephrologists and an expert in negotiating for career development with the aim of helping individuals make a difference in the lives of people with kidney diseases.

Innovation and Discovery Task Force

ASN launched the Innovation and Discovery Task Force. Chaired by S. Ananth Karumanchi, MD, the task force is charged with developing a recommendation for ASN to meet the second goal of its Strategic Plan: “Transform kidney research through discovery and innovation to prevent, treat, and cure kidney diseases.” To meet its goal, the task force has assessed the current activities of ASN focused on fostering innovation, discovery, and research as well as studied the efforts of peer medical societies, patient organizations, foundations, and other exceptional innovators.

The task force identified the need to support and develop future innovators, communicate and educate clinicians regarding breakthrough treatments and approaches, and identify innovative mechanisms and funding sources to generate evidence for and success of cutting edge clinical research to prevent, treat, and cure kidney diseases.

Kidney Health Initiative (KHI)

A public-private partnership among ASN, the U.S. Food and Drug Administration, and the nephrology community, KHI now comprises over 80 organizations. KHI workgroups and the KHI Patient and Family Partnership Council advanced the mission of enhancing patient safety and stimulating innovation in kidney disease.

ASN Foundation for Kidney Research Grants

The ASN Foundation for Kidney Research provides more than $3 million in funding for clinical and basic research for members at all stages of their careers. The Foundation funded 39 leading researchers working to cure kidney diseases through 19 new projects and 20 projects continuing from work begun in 2016.

The Foundation funds the Career Development Grants Program, the Ben J. Lippes Research Fellowship Program, the William and Sandra Bennett Clinical Scholars Program, and the American Society of Nephrology–Harold Amos Medical Faculty Development Program. Beginning in 2018, the Foundation will award five fellowships per year to nephrology PhD students through the ASN Pre-Doctoral Fellowship Program.

ASN Expands Minority Research Award

The ASN-Harold Amos Medical Faculty Development Program (AMFDP) Award, formed in partnership with the Robert Wood Johnson Foundation, was expanded to include two scholars during any given award cycle. Aiming to address the shortage of minority scholars with academic and research appointments in nephrology, the ASN-AMFDP program offers four-year post-doctoral research awards.

The first ASN-AMFDP recipient, Gentozen Hall, MD, PhD, of Duke University School of Medicine, has a research focus on novel gene discovery in African Americans with familial focal segmental glomerulosclerosis. Applications will open again during 2018 for a second scholar.
ASN Outreach at Student National Medical Association (SNMA)

ASN exhibited at the SNMA Annual Meeting in Atlanta, GA, and enrolled more than 60 students for ASN membership. ASN Diversity and Inclusion Committee members Robert S. Hoover, Jr., MD, FASN, and Dimitri A. Augustin, MD, attended the meeting and invited several Emory University faculty members and local practicing nephrologists to speak to students at the ASN booth.

ASN also hosted a reception attended by more than 100 students. The outreach is part of an initiative by the diversity and inclusion committee to increase interest in nephrology careers among students from backgrounds underrepresented in medicine.

Membership Satisfaction, Growth

ASN membership is more than 17,000, an increase over the previous year. Approximately 40% of members now come from outside the United States.

A survey of members asked for input on the value of ASN membership and benefits. More than 90% of respondents said ASN is a primary and reliable source for information on nephrology. One-half cited the ability to stay current about clinical information, trends, and regulatory changes in nephrology, as well as ASN publications, as primary reasons for joining and renewing membership. Members also identified conferences and events and the ability to network with one another as top benefits. When asked what they value most about ASN, members emphasized the credibility ASN provides within the profession.

Goal 4—Foster career development for current and future kidney health professionals

Securing the Future Campaign

The ASN Foundation for Kidney Research received a $1 million contribution from Keryx Biopharmaceuticals, Inc., to establish the Joseph V. Bonventre Career Development Grant, awarded every other year starting in 2018.

The Foundation’s Securing the Future Campaign aims to endow the Career Development Grants Program, which has awarded $31,500,000 in support of talented investigators transitioning to independent research careers since 1996.

Nephrology Workforce Research, Data Efforts

Now in its second year, the ASN Data Analytics Program collaborated on multiple projects assessing educational needs in nephrology fellowship and factors influencing specialty choice. Initial data on Internal Medicine Residency programs from the Best Practices Project will be presented at ASN Kidney Week 2017.

The program oversees the joint Comparing Realities Across the Global Nephrology Workforce project, a collaboration among ASN, ERA-EDTA, and ISN researchers to assess how nephrology practice varies across the world. ASN’s new Nephrology GME Database allows researchers to monitor trends in the nephrology training landscape. A new Early Practice Survey targeted nephrologists 2 to 5 years out of fellowship training, providing a complement to the annual Nephrology Fellow Survey.

ASN Flash Polls assessed current perceptions about nephrology procedures among training program directors and division chiefs, informing discussions at this year’s Nephrology Training Program Retreat. ASN will soon launch the ASN Data Resource Center, a dedicated online platform for ongoing nephrology workforce research.

ASN Launches Kidney TREKS in Chicago

To help spur interest in nephrology among trainees, ASN added a new site to the Kidney TREKS (Tutored Research and Education for Kidney Scholars) program. Now offered at both the University of Chicago and Mount Desert Island Biological Laboratory in Maine, Kidney TREKS offers selected medical students and PhD candidates a chance to explore nephrology through a weeklong kidney research and outreach course, long-term mentorship program, and opportunities for continued participation with ASN.

A preliminary assessment of the Kidney TREKS program found that among 48 participants for whom follow-up data were available, almost half had entered a pipeline specialty leading to nephrology (internal medicine, pediatrics, or medicine-pediatrics) or were conducting research in the kidney space. Of 40 medical student participants, 40% entered a relevant pipeline, and 78% of the researchers (graduate students, PhD candidates, and postdoctoral fellows) had published nephrology-focused research.

ASN Travel Support

ASN provided students and trainees with four opportunities to attend Kidney Week 2017: the Advances in Research Conference (ARC) Early Program, the Karen L. Campbell, PhD, Travel Support Program for Fellows, the Kidney STARS (Students and Residents) Program, and the William E. Mitch, III, MD, FASN, International Scholars Travel Support Program.

A total of 389 students and trainees will participate in these travel support programs, including 260 Kidney STARS, 77 Campbell Fellows, 35 ARC Early Program attendees, and eight Mitch International Scholars.

Goal 5—Assert the value of nephrology to health and science professionals, health care systems, and other stakeholders to ensure high-quality care for patients

Nephrologists Transforming Dialysis Safety (NTDS)

The mission of ASN’s partnership with the U.S. Centers for Disease Control and Prevention is to engage nephrologists as team leaders to target zero infections in dialysis facilities. NTDS developed strategies to enhance implementation of recommended infection prevention practices within the nephrology community.

Through a series of community meetings and focus group sessions, NTDS identified infection control challenges, barriers and opportunities to improve infection prevention practices, as well as methods for early detection and proper treatment of superficial infections in patients undergoing dialysis. NTDS also used a needs assessment to develop the 2017 Roadmap that guides its work.

NTDS launched an educational webinar series with the first webinar entitled, “Targeting Zero Infections: Where Do We Begin?” The webinar addressed the virulence of hepatitis C and the role of the nephrologist as a leader in combating its spread. Webinar participants were directed to the online resource library, a key feature of the NTDS website. Six other webinars and educational offerings at ASN Kidney Week will follow.

A Voice on Capitol Hill

ASN partnered with 21 other health care organizations to advocate for kidney patients and professionals on Capitol Hill. Advocates met with lawmakers to urge dedicated kidney research funding for NIH of $150 million per year for 10 years and for passage of the Living Donor Protection Act on Kidney Health Advocacy Day in March and Kidney Community Advocacy Day in September.

Disaster Relief Efforts for Kidney Patients

To help provide continuity of care for displaced dialysis patients in need of treatment, ASN reacted swiftly following Hurricanes Harvey and Irma. ASN joined efforts by the American Kidney Fund (AKF), the Kidney Community Emergency Response Coalition, dialysis organizations, and other stakeholders to help kidney patients in the aftermath of these natural disasters.

ASN donated $20,000 to the relief efforts for dialysis patients coordinated by AKF to help replace medication, provide transportation to dialysis treatment, and cover household and food essentials. ASN also encouraged interested members to contribute to the AKF’s Disaster Relief Program.
Kidney Advocates Urge NIH Funding Boost, Living Donor Protections
By Zachary Kribs

Advocates from the American Society of Nephrology (ASN) and 21 other kidney and transplant health care organizations met with nearly 100 members of Congress or their staff during the third perennial Kidney Community Advocacy Day on September 19, 2017 (Table 1). A total of 75 advocates urged Congress to continue its historic support of research funding for the National Institutes of Health (NIH) and to cosponsor and pass the Living Donor Protection Act (H.R. 1270), no-cost legislation that would eliminate barriers to living donation and increase access to transplants.

The Capitol Hill visits were part of an ongoing effort by ASN to bolster its legislative agenda. In March, advocates from ASN and the American Association of Kidney Patients met with members of Congress to advocate for increased research funding in the face of the administration's proposed budget cuts to the NIH, as well as to identify potential sponsors of the Living Donor Protection Act. Partly as a result of their efforts, Congress soundly rejected the administration's proposed NIH cuts, instead proposing an increase in funding in line with ASN's request, and has added nearly 30 co-sponsors to the Living Donor Protection Act. Kidney Community Advocacy Day expands on the progress made in previous efforts, with advocates calling on Congress to finalize the increase to the NIH budget and to pass the Living Donor Protection Act.

“The prevalence of kidney diseases in the U.S. is at a record high—I would even say rampant,” said Crystal A. Gadegbeku, MD, chair of the ASN Policy and Advocacy Committee. “With a tremendous need for more innovation in kidney therapies coupled with a nation-wide austerity for many federal budgets.

Report reveals disease burden, funding mismatch

In January, the U.S. Government Accountability Office released a report detailing that 17% of Americans (40 million) have kidney diseases and about 680,000 have kidney failure and rely on dialysis or a transplant to live. The GAO data show that Medicare spends nearly $33 billion on kidney failure, while the investment in federally funded kidney research is the equivalent of just about 1% of that amount. The United States Renal Data System (USRDS) data places total Medicare spending for all kidney diseases at $103 billion. In order to bring better value to Medicare and improve patient outcomes, patient and physician advocates urged Congress to support an additional $150 million per year over 10 years to establish a Special Statutory Funding Program for Kidney Research at The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), supplementing regularly appropriated funds the agency currently receives.

Advocates also asked Congress to pass the Living Donor Protection Act to remove barriers to living organ donation in order to address the nation’s organ shortage crisis. Over 100,000 Americans are on the kidney transplant wait list. Although a patient is added to the list every 14 minutes, 13 Americans die every day waiting for a kidney transplant. Besides increasing quality of life, transplants also save Medicare expenditures compared to dialysis: Medicare spends about $30,000 per transplant patient versus nearly $90,000 per hemodialysis patient annually on average.

Participants in Kidney Community Advocacy Day represented a diverse group of kidney care and transplant physicians and patients, and traveled from 22 different states to speak to Congress about the importance of kidney research and living donation. Roughly 60% of these individuals had experienced a previous Kidney Community Advocacy Day. The night before, advocates gathered for a group dinner and training session during which staff from the represented organizations provided guidance on effective Capitol Hill advocacy and answered questions about the current political climate and its effect on kidney and transplant issues.

During the day, advocates shared their own personal experiences with kidney diseases with their congressional delegations. They cited these personal stories, as well as the high prevalence and large human toll of kidney diseases, as reasons for their involvement in advocating for more research funding and better care. After the event, participants urged others to get involved in advocacy, and many pledged to participate in a future Kidney Community Advocacy Day.

Table 1. Participants in Kidney Community Advocacy Day 2017

<table>
<thead>
<tr>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome Foundation</td>
</tr>
<tr>
<td>American Association of Kidney Patients</td>
</tr>
<tr>
<td>American Kidney Fund</td>
</tr>
<tr>
<td>American Nephrologists of Indian Origin</td>
</tr>
<tr>
<td>American Nephrology Nurses Association</td>
</tr>
<tr>
<td>American Society of Nephrology</td>
</tr>
<tr>
<td>American Society of Pediatric Nephrology</td>
</tr>
<tr>
<td>American Society of Transplantation</td>
</tr>
<tr>
<td>American Society of Transplant Surgeons</td>
</tr>
<tr>
<td>Children’s Organ Transplant Association</td>
</tr>
<tr>
<td>Home Dialyzors United</td>
</tr>
<tr>
<td>IgA Nephropathy Foundation of America</td>
</tr>
<tr>
<td>Lowe Syndrome Association</td>
</tr>
<tr>
<td>NATCO</td>
</tr>
<tr>
<td>National Kidney Foundation</td>
</tr>
<tr>
<td>National Renal Administrators Association</td>
</tr>
<tr>
<td>NephCure Kidney International</td>
</tr>
<tr>
<td>Polycystic Kidney Disease Foundation</td>
</tr>
<tr>
<td>Renal Pathology Society</td>
</tr>
<tr>
<td>Renal Physicians Association</td>
</tr>
<tr>
<td>Society for Transplant Social Workers</td>
</tr>
<tr>
<td>Transplant Recipients International Organization</td>
</tr>
</tbody>
</table>

Left to right: Hon. Karen Thurman (a former congressional representative from Florida representing the PKD Foundation), Edward Drake II (Georgia, American Association of Kidney Patients), and John Menendez (Florida, Alport Syndrome Foundation), meet with a staff member from the office of Sen. David Perdue (R-GA).
THE MORE DIFFICULT THE CASE,
THE LESS DIFFICULT THE CHOICE OF HOSPITAL.

Ranked No. 10 in the nation by *U.S. News & World Report*, 2017-18, our physicians and scientists at The Mount Sinai Hospital’s Division of Nephrology are internationally recognized as authorities on the causes and treatments of all forms of adult and pediatric kidney diseases. Our kidney transplant specialists are investigating new ways to detect, prevent, and treat rejection that will have a lasting impact on the field. Our physicians are all on the faculty at the Icahn School of Medicine at Mount Sinai, which is ranked among the nation’s top medical schools by *U.S. News & World Report*.

- Division of Nephrology
- Division of Pediatric Nephrology
- The Recanati/Miller Transplantation Institute
- Hypertension Program

- Glomerular Disease Program
- Mount Sinai Home Dialysis Program
- Mount Sinai Kidney Center (Dialysis)
- Mount Sinai Kidney Stone Center

1-800-MD-SINAI • mountsinai.org/msnephro
Access to Hospice

By Debra Hain

An aging ESRD population with complex medical issues demands our attention. As nephrologists, we must seek to discover the best ways to achieve quality care and quality of life for these individuals and their families within a cost-constrained health care environment.

Older adults with ESRD have the option of withholding dialysis or withdrawing from dialysis when the burden outweighs the potential benefits. In these situations, hospice care is one intervention that supports quality care, quality of life, and reduced health care costs through symptom management, spiritual and psychosocial support, and avoidance of unnecessary hospitalizations. Hospice care, however, continues to be underutilized owing to several barriers such as lack of education in hospice care and ineffective training regarding advance care planning that includes preferences for end-of-life (EOL) care (1, 2). The percentage of Medicare beneficiaries receiving hospice care at the time of death has increased over the past decade, but opportunities for improvement in EOL care remain, including improvement in timely referral for hospice care.

As supported by epidemiological data, most patients receive hospice services only after discontinuing dialysis treatments. From 2004 to 2013, use of hospice care increased from 59% to 82% in those discontinuing dialysis and from 5% to 8% among those who did not discontinue dialysis (3). Evidence has indicated that many individuals with ESRD die in the hospital, which is not only costly but often is incongruent with the person’s wishes for EOL care. Advance care planning, in which health care professionals, patients, and families engage in shared decision-making that considers what matters most to the person living with ESRD, can facilitate greater hospice utilization and avoid costly hospitalization (4). Initiating hospice care earlier may allow death to occur in the person’s place of choice.

Medicare hospice criteria
The four criteria for enrollment in Medicare Part A Hospice care are:

1. US citizen who is eligible for Social Security or railroad retirement benefits and over age 65 or under 65 years and eligible for Medicare because of a long-term disability for >2 years and/or ESRD,
2. referral to certified Medicare provider (generally certified by CMS to provide services under the Medicare hospice benefit),
3. a statement signed by patient stating they are choosing hospice care instead of regular Medicare for the terminal diagnosis (Medicare does allow for regular reimbursement for incidental medical expenses unrelated to terminal diagnosis; the relatedness is determined by hospice medical director), and
4. certification by the individual’s personal physician and the hospice medical director that the person has a terminal diagnosis and with a life expectancy of six months or less if the illness takes its normal course. The patient’s treatment goals should emphasize symptom management, and outcomes should focus on comfort and quality of life.

The Medicare Hospice Benefit is divided into a number of certification periods with eligibility for two 90-day periods followed by unlimited periods of 60 days. The person on hospice requires recertification at each of these timeframes to determine continued eligibility. An important criterion for recertification is continued decline. Since 2011, Medicare has required a face-to-face encounter by a physician or nurse practitioner prior to recertification period. Acute inpatient hospice care can be provided in a hospice facility for those who are actively dying or for complex symptom management that cannot be addressed in the home.

Medicare hospice benefit specific for ESRD
Unless individuals with ESRD have another terminal illness (e.g., cancer, chronic obstructive pulmonary disease, heart failure) that meets hospice criteria as determined by the hospice physician, they will have to forgo life-sustaining treatment related to ESRD (e.g., dialysis or transplantation). For example, if individuals have a terminal diagnosis of cancer that meets the Medicare Hospice Benefit criteria they can opt to continue the dialysis Medicare ESRD benefit. If the terminal diagnosis is kidney failure and dialysis is provided then it becomes the responsibility of the hospice provider to pay for the dialysis treatments. This reality is not feasible because hospice providers are not reimbursed for the dialysis treatments and therefore, may not be able to financially encompass the high cost of providing this service (Table 1).

Table 1. CMS hospice criteria, benefits, and eligibility

<table>
<thead>
<tr>
<th>CMS hospice criteria for kidney failure as a terminal diagnosis</th>
<th>CMS hospice benefits and eligibility specific for kidney failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Serum creatinine 8 mg/dL or greater (6 mg/dL or greater in patients with diabetes) or • Creatinine clearance <10 mL/min/1.73 m² (<15 mL/min/1.73 m² for individuals with diabetes) or • Symptoms</td>
<td>Home Health and Hospice Benefits Available for ESRD Beneficiaries, tagline 50.6.1.</td>
</tr>
<tr>
<td>“Medicare beneficiaries can receive care under both ESRD benefit and the home health or hospice benefits. The key is whether or not the services are related to ESRD.”</td>
<td>“If the patient’s terminal condition is not related to ESRD, the patient may receive covered services under both ESRD benefit and the hospice benefit. A patient does not need to stop dialysis treatment to receive care under the hospice benefit.”</td>
</tr>
</tbody>
</table>

References
The Physician’s Choice

Over 450 Million Treatments Strong

Indications for Use: Optiflux F160NRe, F180NRe, F200NRe and F250NRe dialyzers are intended for patients with acute or chronic renal failure when conservative therapy is judged to be inadequate.

Caution: Federal (US) law restricts these devices to sale by or on the order of a physician.

Note: Read the Instructions for Use for safe and proper use of these devices. For a complete description of hazards, contraindications, side effects and precautions, see full package labeling available at www.fmcna.com.

Note: The applicability of a dialyzer for a particular treatment is the responsibility of the physician. In rare cases, thrombocytopenia or hypersensitivity reactions including anaphylactic or anaphylactoid reactions to the dialyzer or other elements in the extracorporeal circuit may occur during hemodialysis.

© 2017, Fresenius Medical Care, All Rights Reserved. Fresenius Medical Care; the triangle logo; Fresenius Renal Technologies; Fresenius Polysulfone; and Optiflux are trademarks of Fresenius Medical Care Holdings, Inc. or its affiliated companies. All other trademarks are the property of their respective owners. P/N 103331-02 Rev A 06/2017

Fresenius Renal Technologies,
a division of Fresenius Medical Care North America
920 Winter Street, Waltham, MA 02451
800-662-1237 | www.fmcna-dialyzers.com

1 FMCNA Results: Data as of May 2017
Integrating Advance Care Planning into the Care of Patients with Kidney Disease

By Dale Lupu, MPH, PhD; Alvin H. Moss, MD; Nancy Armistead, MPA; and Brandy Vinson

“There’s no doubt that my wife and I waited too long to have that discussion, and part of that is—my wife is very quiet…we’ve been married for 55 years. So we never really had that discussion. And before I realized, it was kind of too late.” (interview 6, family, woman) (1).

“I think that discussion should come before you get to the critical point. At the jump of a dime things could turn, so I think the more prepared you are, the better you could handle things when situations get tough.” (interview 1, family, woman) (1).

Patient and caregiver perspectives on advance care planning

In numerous studies, patients with chronic kidney disease (CKD) and ESRD have indicated that they want to talk about advance care planning (ACP) with their nephrologist and care teams (1, 2). ACP discussions are associated with improved goal-consistent care, including increased likelihood of dying in the patient’s preferred setting, reduced hospitalization, and less aggressive care at the end of life (3, 4). Yet only 6% to 38% of dialysis patients have an advance care plan (5). Even when ACP is documented in the dialysis patient’s medical record, it rarely documents specific patient preferences regarding dialysis. A study of Mayo Clinic dialysis patients found that only one half (49%) of the patients had a documented advance directive in their chart. Of these, only 10.6% of documents specifically mentioned patient preferences regarding dialysis, and less than one half (44.2%) addressed preferences for cardiopulmonary resuscitation (CPR) (6).

If this were merely a matter of getting more people to file paperwork, it might not be alarming. However, the low rates of ACP go hand in hand with evidence that patient preferences are not routinely elicited and followed. Davison (7) found that only 10% of patients reported an end-of-life care conversation with their nephrologist, despite the fact that such conversations were patients’ highest priority in end-of-life planning (8).

Barriers to ACP for CKD and ESRD patients

Leaders in nephrology have advocated for more widespread integration of ACP into care (9), but many barriers have slowed progress. Providers often do not feel this is their job, many do not adequately understand ACP, and there is a lack of integration of multidisciplinary resources that could help (10, 11). Furthermore, many implementation details—such as the best timing, setting, and team—have not been well researched, leaving providers to experiment on their own.

A 2015 editorial on ACP for nephrology patients explicitly called for studies of earlier ACP before choosing dialysis, with particular attention to the concerns of patients choosing supportive care (2). The editorial also called for tools who should be called on to make medical decisions if the patient is unable to make them for herself and gives some guidance as to the principles to follow the CSCKP approach to ACP is to normalize the process by decoupling it from worsening prognosis. The CSCKP suggests that everyone—especially those with a chronic disease—should have an advance care plan that specifies who should be called on to make medical decisions if the patient is unable to make them for herself and gives some guidance as to the principles to follow the making those decisions. The CSCKP advises patients to follow five steps:

1. Choose someone to make health care decisions for you if you get sick and cannot speak for yourself.
2. Think about what kind of health care you would want if you were unlikely to get better. Discuss your wishes with your family and friends.
3. Write your wishes down in a legal form known as an advance directive (sometimes called a living will or a medical power of attorney).
4. Give a copy of your advance directive to your health care agent and your kidney care team. Continue talking to your family about your wishes.
5. Work with your kidney care team to complete a medical order form (usually called POLST, MOLST, or POST; polst.org) to record your wishes.

Ideally, ACP is one part of ongoing discussions that the nephrology team initiates about the issues that arise with serious illness and is integrated into the workflow for the nephrology clinic or dialysis center (13), Table 1 shows common barriers to routine ACP and suggests resources or steps that a practice can take to improve its processes.

The nephrology community recognizes that successfully implementing ACP for CKD and ESRD patients is necessary to provide individualized patient-centered care. Multiple studies are underway to develop best practices for ACP for this patient population.

References

Table 1

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Solution</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP uncertainty</td>
<td>Use a conversation guide; enhance provider communication skills.</td>
<td>CSCKP ACP curriculum (kidneysupportivecare.org); VitalTalk training online (www.vitaltalk.org); Serious Illness Conversation Guide (https://www.arialmelabs.org/areas-of-work/serious-illness-care/resources/#Downloads&Tools)</td>
</tr>
<tr>
<td>ACP initiation</td>
<td>Commit to taking the lead.</td>
<td>See CSCKP resources for professionals (http://www.kidneysupportivecare.org/For-Professionals/Advance-Care-Planning.aspx)</td>
</tr>
<tr>
<td>ACP appropriateness</td>
<td>Use an opt-out standard—assume that all patients should be offered ACP unless there is a specific contraindication.</td>
<td>Prepare for your care (https://www.prepareforyourcare.org/page); recognized forms in all states (www.caringinfo.org/44a/pages/index.cfm?pageld=328); additional resources (www.kidneysupportivecare.org/For-Patients-Families/Advance-Care-Planning.aspx)</td>
</tr>
<tr>
<td>Educational materials</td>
<td>Multiple resources now available; review and select the one that best suits your practice and patients.</td>
<td>American Nephrology Nurses Association’s “Techniques to Facilitate Discussions for Advance Care Planning (ACP) module is the first in a series of educational modules on EOL decision-making, and the Nephrology Nurse is an in-depth national program to promote education for nurses and improve end-of-life care</td>
</tr>
<tr>
<td>Time crunch</td>
<td>Involve other team members, such as nurse practitioners, social workers, or other trained coaches.</td>
<td>The CSCKP has a model Advance Care Planning Policy template to assist dialysis facility staff in developing ACP policies and procedures (http://www.kidneysupportivecare.org/For-Professionals/Advance-Care-Planning.aspx)</td>
</tr>
<tr>
<td>Not part of workflow</td>
<td>Develop a standard process; make it a standing agenda item at QAPI meetings.</td>
<td>Most EMRs have a place where advance directives can be stored; use the EMR capacity and improve on it with custom fields; however, make sure everyone knows how to use it, what information needs to be documented, and where to find the information when needed</td>
</tr>
<tr>
<td>Not integrated</td>
<td>Use a template within the EMR that captures key data, including proxy contact information and content of discussions about patient values and preferences; train all staff so that ACP discussions are consistently documented in the same location.</td>
<td>POLST programs by state (http://polst.org/programs-in-your-state/)</td>
</tr>
<tr>
<td>ACP information not shared</td>
<td>Participate in the POLST registry if your state has one; participate in other registries as available; if no local registry, make sure that ACP information is conveyed routinely to other providers along with information, such as laboratory values; help patients recognize the importance of keeping documents accessible.</td>
<td>POLST documents information not shared across settings</td>
</tr>
<tr>
<td>This takes time and cost</td>
<td>Appropriately code ACP sessions to receive Medicare reimbursement for ACP.</td>
<td>This all takes time, which is costly</td>
</tr>
<tr>
<td>Do not know whether</td>
<td>Adopt quality measures and conduct performance improvement projects for ACP.</td>
<td>Do not know whether ACP is making improvements</td>
</tr>
</tbody>
</table>

Abbreviations: ACP = advance care planning; CSCKP = Coalition for Supportive Care of Kidney Patients; EMR = electronic medical record; EOL = end of life; POLST = Physician’s Orders for Life-Sustaining Treatment; QAPI = Quality Assurance & Performance Improvement.

Integrating Geriatrics into Nephrology: A Report on the 2017 American Geriatric Society Annual Scientific Meeting

By Rasheeda Hall, MD

The US dialysis population is growing faster than the number of new nephrologists. At the same time, our population is aging, and there is a shortage of geriatricians. Beyond efforts to expand the nephrology and geriatrics workforce, it is also extremely important to pursue interdisciplinary collaboration. How can we ensure that older adults receiving dialysis receive quality care for their geriatric conditions? How can geriatricians be great partners in managing older adults with chronic kidney disease? Communication between nephrologists and geriatricians will add value for patient care and generate ideas for research.

As the liaison between the American Society of Nephrology (ASN) and the American Geriatric Society (AGS), I attended the AGS annual meeting in May 2017. The meeting focused on current issues in aging and was geared toward all health care professionals who care for older adults, including nephrologists. The value of individualized care for older adults on the basis of life expectancy prediction was the focus of a compelling talk by Sei Lee of the University of California, San Francisco Department of Medicine, Division of Geriatrics. Patients predicted to have limited life expectancy are not likely to benefit from preventive interventions, such as colon cancer screening, Lee noted. This theme overlapped with my own presentation showing that the cost-effectiveness of arteriovenous fistula is reduced in older adults with limited life expectancy.

Beyond life expectancy, another key theme at the meeting was co-management. A poster from Laura Fernandez and Julie Paik at the Boston Veterans Affairs Medical Center highlighted a Geriatric-Nephrology Collaborative Clinic, in which a geriatrician performed comprehensive geriatric assessments in older veterans with chronic kidney disease. The geriatrician then identified geriatric syndromes and provided treatment recommendations to the nephrology team. Although functional impairment was the most common geriatric syndrome, the most common treatment recommendations were medication changes followed by referrals to nephrologists, social services, or rehabilitation or audiology.

Laura Plantinga and her colleagues at Emory University presented a study about the association of serious fall injuries in dialysis patients associated with serious fall injuries in dialysis patients. They found that patients who experienced a serious fall injury were nearly 80% less likely to be hospitalized. Among the waitlisted patients, those who had a serious fall injury were 53% less likely to subsequently receive a transplant. Prior studies show that falls increase mortality risk in dialysis patients, so these findings bring attention to yet another complication of injurious falls in this population. Another highlight from the AGS annual meeting is its annual morning meeting for medical subspecialists. As ASN liaison, I highlighted the ASN’s Supportive Care online community and the Coalition for the Supportive Care of Kidney Patients Luncheon held at Kidney Week 2016. I also described current National Institute on Aging-funded research involving frailty, disability, and shared decision-making in older adults with ESRD. From other subspecialists’ presentations, I learned about integrated working groups, such as the Cancer and Aging Research Group that pursues research collaborations across multiple institutions. This model of collaboration among various specialists at multiple institutions is an intriguing example for growing the field of geriatric nephrology.

Wise to learn more and/or get involved in geriatric nephrology? Through the ASN’s website, you can access the Online Curriculum on Geriatric Nephrology and the Supportive Care online community. At ASN Kidney Week 2017, you may network with members of the Supportive Care online community who will be present for a Supportive Care Meetup at the ASN Communities Lounge. Last, consider attending the next AGS annual meeting May 3 to 5, 2018, in Orlando, FL.

Rasheeda Hall, MD, is a medical instructor in the Division of Nephrology, Department of Medicine, at Duke University School of Medicine, in Durham, NC.
Nephrologists’ Interactions and Attitudes toward Palliative Care, End of Life

By Areeba Jawed

“Can I stop dialysis?” asked my 88-year-old wheelchair-bound patient on a late fall afternoon. I squinted my eyes to block not only the streaming sunlight but my reaction: one of bewilderment.

In a 2015 study of nephrology fellows, 99% of respondents agreed that physicians have a responsibility to help patients at the end of life (EOL) and in preparing for death; however, in their fellowship training, less than one-half were taught how to respond to a patient’s request to discontinue dialysis therapy, conduct a family meeting about dialysis options, or determine when to refer patients to hospice or palliative care (1). As per the US Renal Data System, patients older than 75 years are the fastest growing dialysis population (2), and among the elderly with acute kidney injury who need dialysis, studies show that 50% or more die within the hospitalization (3). Now, more than ever, nephrologists face the question of EOL care in patients with chronic kidney disease and encounter the need for shared decision-making in the intensive care unit (ICU) when offering acute dialysis to the elderly with poor prognosis.

Patients on dialysis have a remarkably low rate of documented EOL preferences, despite known high mortality rates and evidence supporting that advance care planning (ACP) improves EOL care (4). Compared with cancer or congestive heart failure patients, ESRD patients are far more likely to be admitted to the ICU and much less likely to be enrolled in hospice in the last month of life, demonstrating the need for increased use of palliative resources by the nephrology community (5). It is particularly disappointing to see patients with ESRD do so poorly compared with others with chronic illnesses in this regard while there exists an environment conducive to eliciting patients’ preferences regarding ACP and to identify system-level barriers for its implementation (6).

Current metrics to assess delivery of standard of care in dialysis patients focus on disease-specific parameters and leave little room to recognize the need and reward of the provision of palliative care to reduce symptom burden in patients. In fact, nephrologists in the United States identified financial incentives for dialysis as a potential barrier to withdrawal of dialysis therapy when warranted; this was compounded by lack of compensation for lengthy EOL care discussions with patients and families (10). Electronic health records can also facilitate or hinder the job of the nephrologist in ACP depending on how well the interface interacts with multiple providers; instances have been described where patients reportedly had conversations with primary care providers (PCPs) regarding EOL care that were not communicated to nephrologists by the patient or the PCP (11).

Patients on dialysis have multiple comorbidities, high symptom burden, and mortality approaching those for certain malignancies. There is a well recognized need for subspecialist palliative care skills in the nephrology world. Efforts need to be made to incorporate palliative care education within the nephrology curriculum for trainees, and system-level barriers should be addressed to facilitate provision of appropriate EOL care to dialysis patients. Nephrologists must advocate for the rights of their patients to live the life they desire, because “...in stories, endings matter” (12).

Areeba Jawed, MD, is an Assistant Professor and Clinical Ethicist in the Division of Nephrology at Wayne State University School of Medicine, Detroit, MI.

References
FGF23 Doesn’t Predict Outcomes in Patients with Low-Risk Stage 3 CKD, Study Finds

In primary care patients with stage 3 chronic kidney disease (CKD), low vitamin D and high parathyroid hormone (PTH) are predictors of increased mortality—but high fibroblast growth factor 23 (FGF23) is not, reports a study in BMJ Open.

Vitamin D deficiency, PTH, and elevated fibroblast growth factor 23 (FGF23) have all been associated with increased mortality in individuals with chronic kidney disease (CKD).

Noting that previous studies focused only on the effects of FGF23 in relatively advanced CKD, Adam Shardlow, of the Royal Derby Hospital Renal Medicine Department, and his colleagues set out to determine whether FGF23 is also a risk factor in people with early CKD, and to assess how this risk compares to the risk associated with vitamin D deficiency or elevated PTH.

Shardlow and his colleagues conducted a prospective cohort study of 1664 patients meeting KDIGO criteria for stage 3 CKD, drawn from 32 UK general practices. Participants were predominantly older, with a mean age of 73 years, and had a low risk of progression of their kidney disease. About 60% of patients were women. Fibroblast growth factor 23, PTH, and vitamin D were evaluated as risk factors for mortality or for CKD progression over 5 years of follow-up.

At baseline, 29% of patients had elevated FGF23 (> 51 pg/mL). Twenty-five percent of patients had elevated PTH (> 65 pg/mL), 6.3% had vitamin D deficiency, and 38.9% had vitamin D insufficiency. During follow-up, 18.9% of patients died from any cause, and 17.4% had progression of CKD.

Mortality was higher for patients with elevated FGF23, elevated PTH, and vitamin D deficiency and insufficiency. In adjusted analyses, vitamin D deficiency and elevated PTH remained significant risk factors for mortality, with a hazard ratio of 1.62 and 1.42, respectively.

In contrast, FGF23 was not an independent predictor of death on multivariable analysis. None of the three markers was significantly associated with risk of CKD progression. Few patients in the primary care sample had progression to end stage renal disease.

“While FGF23 may have a role as a risk marker in high-risk populations managed in secondary care, our data suggest that it may not be as important in CKD stage 3, managed in primary care,” the authors write.

Securing the Future
ASN Foundation for Kidney Research
Time for a Cure

Building Bridges for those Building Cures

Taking chances, asking questions, transforming care. Early career investigators are building the future of kidney care by bringing new perspectives to the toughest challenges in kidney research. The Career Development Grants Program provides critical support to talented young investigators, building a bridge to future funding, career independence, and groundbreaking scientific discoveries. Help us secure the future of researchers who will open new avenues to care, and cures, for people with kidney diseases.

To be good stewards of kidney research, we must come together and commit to endowing grants in perpetuity. Our vision is to guarantee funding for kidney research today, tomorrow, and forever with the aim to attract more investigators to the field and increase innovation.

Raymond C. Harris, MD, FASN
Chair, ASN Foundation for Kidney Research

The time for change is now. The time to secure our future is now. Please join us.
Learn more at www.asn-online.org/donate or click the “Donate” icon on the Kidney Week app.

Double your impact! For a limited time, ASN will match all donations made by individuals to the Securing the Future Campaign.

Thank you to the following donors for their generous contributions to the Securing the Future Campaign*

Founders Circle
Bob Alpern and Pat Preisig
Jonathan and Deb Himmelfarb
William E. Mitch and Alexandra F. Mitch

Benefactor
Paula Messenheimer and Raymond Harris
Mark D. Okusa and Diane L. Rosin Okusa
Ambra and Roy Zent

Patron
Sharon Anderson
Tomas Beri
Joseph V. Bonventre
Linda and Tom DuBose
Thomas H. Hostetter
Allison and Tod Ibrahim
Sharon and John Moe
Barbara Murphy

continued Patron
Prabir Roy-Chaudhury
Paul W. Sanders
John Sedior and Geri Presti
Donald and Wanda Wesson

Advocate
Anupam Agarwal and Lisa M. Curtis
Peter S. Aronson
Deidra C. Crews
The Hakim Family Fund
William and Mary Henrich
Eleanor D. Lederer
Julie Lin and Frank S. David
Rajnish Mehrotra
Susan E. Quaggin
Donald E. Wesson

Associate
Keisha L. Gibson
Yvonne C. and J. Charles Jennette
Jeffrey H. Miner
Bruce and Karen Molitoris
Uptal Patel
Mark Rosenberg and Monica Overkamp
Dietel O. Schindlendorf
C. Craig and Audrae Tisher

Industry
Keryx Biopharmaceuticals
AMGEN

Please join this important effort and add your name to the list of those working to Secure the Future.

Thank you to the Securing the Future Campaign Executive Committee for leading this important effort.

Thomas D. DuBose, Jr., MD, FASN, Co-Chair
Thomas H. Hostetter, MD, Co-Chair
Anupam Agarwal, MD, FASN
Robert J. Alpern, MD
Allan J. Collins, MD
Deidra C. Crews, MD, FASN, MPH
Keisha L. Gibson, MD
Raymond M. Hakim, MD, PhD
J. Charles Jennette, MD
William E. Mitch, III, MD, FASN
Sharon Moe, MD, FASN
Sarah S. Prichard, MD
Susan E. Quaggin, MD
Donald E. Wesson, MD, FASN
Myles S. Wolf, MD
Roy Zent, MD, PhD

*donor list as of 8/24/17
For adult patients with chronic gout refractory to conventional treatments to address their significant urate burden

OPEN THEM TO THE POSSIBILITY OF COMPLETE RESOLUTION IN MONTHS, NOT YEARS

In the pivotal clinical trials for KRYSTEXXA® (pegloticase)

42% of patients had a complete serum uric acid (sUA) response and met the primary endpoint of maintaining sUA <6 mg/dL for ≥80% of the time in months 3 and 6.2,3

45% of patients had complete resolution of at least 1 target tophus, with no new or progressive tophi, in 6 months.3

*Based on the pooled results of replicate, multicenter, randomized, double-blind, placebo-controlled 6-month trials. Patients included adults with chronic gout refractory to conventional therapy. All investigators and patients were blinded to both treatment arm and sUA response.1,2

Patients with comorbid chronic kidney disease experienced similar efficacy and safety compared with the rest of the patient population.5,6

Not an actual depiction of chronic refractory gout.

INDICATIONS AND USAGE

KRYSTEXXA® (pegloticase) is indicated for the treatment of chronic gout in adult patients who have failed to normalize serum uric acid and whose signs and symptoms are inadequately controlled with xanthine oxidase inhibitors and whose signs and symptoms are inadequately controlled with xanthine oxidase inhibitors at the maximum medically appropriate dose or for whom these drugs are contraindicated.

IMPORTANT SAFETY INFORMATION

WARNING: ANAPHYLAXIS AND INFUSION REACTIONS

Anaphylaxis and infusion reactions have been reported to occur during and after administration of KRYSTEXXA. Anaphylaxis may occur with any infusion, including a first infusion, and generally manifests within 2 hours of the infusion. However, delayed-type hypersensitivity reactions have also been reported. KRYSTEXXA should be administered in healthcare settings and by healthcare providers prepared to manage anaphylaxis and infusion reactions. Patients should be premedicated with antihistamines and corticosteroids. Patients should be closely monitored for anaphylaxis and infusion reactions. Patients should be premedicated with antihistamines and corticosteroids. Patients should be closely monitored for anaphylaxis and infusion reactions.

ADVERSE REACTIONS

An increase in gout flares is frequently observed upon initiation of anti-hyperuricemic therapy, including treatment with KRYSTEXXA. If a gout flare occurs during treatment, KRYSTEXXA need not be discontinued. Gout flare prophylaxis with a non-steroidal anti-inflammatory drug (NSAID) or colchicine is recommended starting at least 1 week before initiation of KRYSTEXXA therapy and lasting at least 6 months, unless medically contraindicated or not tolerated.

CONGESTIVE HEART FAILURE

KRYSTEXXA has not been studied in patients with congestive heart failure, but some patients in the clinical trials experienced exacerbation. Exercise caution when using KRYSTEXXA in patients who have congestive heart failure and monitor patients closely following infusion.

To learn more about the clinical benefits of KRYSTEXXA, VISIT BOOTH 910

www.KRYSTEXXAhcp.com

GOUT FLARES

An increase in gout flares is frequently observed upon initiation of anti-hyperuricemic therapy, including treatment with KRYSTEXXA. If a gout flare occurs during treatment, KRYSTEXXA need not be discontinued. Gout flare prophylaxis with a non-steroidal anti-inflammatory drug (NSAID) or colchicine is recommended starting at least 1 week before initiation of KRYSTEXXA therapy and lasting at least 6 months, unless medically contraindicated or not tolerated.

CONGESTIVE HEART FAILURE

KRYSTEXXA has not been studied in patients with congestive heart failure, but some patients in the clinical trials experienced exacerbation. Exercise caution when using KRYSTEXXA in patients who have congestive heart failure and monitor patients closely following infusion.

REFERENCES

3. KRYSTEXXA [prescribing information]. Horizon Pharma Rheumatology LLC. September 2016.

For adult patients with chronic gout refractory to conventional treatments to address their significant urate burden

OPEN THEM TO THE POSSIBILITY OF COMPLETE RESOLUTION IN MONTHS, NOT YEARS

INDICATIONS AND USAGE

KRYSTEXXA® (pegloticase) is indicated for the treatment of chronic gout in adult patients who have failed to normalize serum uric acid and whose signs and symptoms are inadequately controlled with xanthine oxidase inhibitors and whose signs and symptoms are inadequately controlled with xanthine oxidase inhibitors at the maximum medically appropriate dose or for whom these drugs are contraindicated.

IMPORTANT SAFETY INFORMATION

WARNING: ANAPHYLAXIS AND INFUSION REACTIONS

Anaphylaxis and infusion reactions have been reported to occur during and after administration of KRYSTEXXA. Anaphylaxis may occur with any infusion, including a first infusion, and generally manifests within 2 hours of the infusion. However, delayed-type hypersensitivity reactions have also been reported. KRYSTEXXA should be administered in healthcare settings and by healthcare providers prepared to manage anaphylaxis and infusion reactions. Patients should be premedicated with antihistamines and corticosteroids. Patients should be closely monitored for anaphylaxis and infusion reactions. Patients should be premedicated with antihistamines and corticosteroids. Patients should be closely monitored for anaphylaxis and infusion reactions.

ADVERSE REACTIONS

An increase in gout flares is frequently observed upon initiation of anti-hyperuricemic therapy, including treatment with KRYSTEXXA. If a gout flare occurs during treatment, KRYSTEXXA need not be discontinued. Gout flare prophylaxis with a non-steroidal anti-inflammatory drug (NSAID) or colchicine is recommended starting at least 1 week before initiation of KRYSTEXXA therapy and lasting at least 6 months, unless medically contraindicated or not tolerated.

CONGESTIVE HEART FAILURE

KRYSTEXXA has not been studied in patients with congestive heart failure, but some patients in the clinical trials experienced exacerbation. Exercise caution when using KRYSTEXXA in patients who have congestive heart failure and monitor patients closely following infusion.

REFERENCES

3. KRYSTEXXA [prescribing information]. Horizon Pharma Rheumatology LLC. September 2016.

To learn more about the clinical benefits of KRYSTEXXA, VISIT BOOTH 910

www.KRYSTEXXAhcp.com

GOUT FLARES

An increase in gout flares is frequently observed upon initiation of anti-hyperuricemic therapy, including treatment with KRYSTEXXA. If a gout flare occurs during treatment, KRYSTEXXA need not be discontinued. Gout flare prophylaxis with a non-steroidal anti-inflammatory drug (NSAID) or colchicine is recommended starting at least 1 week before initiation of KRYSTEXXA therapy and lasting at least 6 months, unless medically contraindicated or not tolerated.

CONGESTIVE HEART FAILURE

KRYSTEXXA has not been studied in patients with congestive heart failure, but some patients in the clinical trials experienced exacerbation. Exercise caution when using KRYSTEXXA in patients who have congestive heart failure and monitor patients closely following infusion.

REFERENCES

3. KRYSTEXXA [prescribing information]. Horizon Pharma Rheumatology LLC. September 2016.
INDICATIONS AND USAGE

KRYSTEXXA® (pegloticase) is a PEGylated uric acid specific enzyme indicated for the treatment of chronic gout in adult patients refractory to conventional therapy.

Important Limitations of Use:

- KRYSTEXXA® is not recommended for the treatment of asymptomatic hyperuricemia.
- Glucose-6-phosphate dehydrogenase (G6PD) deficiency

CONTRAINDICATIONS

Anaphylaxis

During pre-marketing controlled clinical trials, anaphylaxis was reported with a frequency of 6.5% of patients treated with KRYSTEXXA every 2 weeks, compared to none with placebo. Manifestations included wheezing, perioral or lingual edema, or hemodynamic instability, with or without rash or urticaria. Cases occurred in patients being pre-treated with one or more doses of an oral antihistamine, an intravenous corticosteroid and/or acetaminophen. This pre-treatment may have blunted or obscured symptoms or signs of anaphylaxis and therefore the reported frequency may be an underestimate. [see Adverse Reactions (8), in full prescribing information]

KRYSTEXXA should be administered in a healthcare setting by healthcare providers prepared to manage anaphylaxis and infusion reactions.

- Patients should be pre-medicated with antihistamines and corticosteroids.
- Patients should be closely monitored for an appropriate period of time for anaphylaxis after administration of KRYSTEXXA.
- Monitor serum uric acid levels prior to infusions and consider discontinuing treatment if levels increase to above 6 mg/dL, particularly when 2 consecutive levels above 6 mg/dL are observed.
- Screen patients at risk for G6PD deficiency prior to starting KRYSTEXXA. Hemolysis and methemoglobinemia have been reported with KRYSTEXXA in patients with G6PD deficiency. Do not administer KRYSTEXXA to patients with G6PD deficiency (4, 5.3).

WARNINGS AND PRECAUTIONS

Infusion Reactions

During pre-marketing controlled clinical trials, infusion reactions have been reported to occur during and after administration of KRYSTEXXA (5.1, 5.2).

- Anaphylaxis is an infusion reaction. Reactions have been reported to occur during and after administration of KRYSTEXXA (5.1, 5.2).
- Anaphylaxis may occur with any infusion, including a first infusion, and generally manifests within 2 hours of the infusion. However, delayed-type hypersensitivity reactions have also been reported.

- KRYSTEXXA should be administered in healthcare settings and by healthcare providers prepared to manage anaphylaxis and infusion reactions.

- Patients should be pre-medicated with antihistamines and corticosteroids.

- Patients should be closely monitored for an appropriate period of time for anaphylaxis after administration of KRYSTEXXA.

- Monitor serum uric acid levels prior to infusions and consider discontinuing treatment if levels increase to above 6 mg/dL, particularly when 2 consecutive levels above 6 mg/dL are observed.

- Screen patients at risk for G6PD deficiency prior to starting KRYSTEXXA. Hemolysis and methemoglobinemia have been reported with KRYSTEXXA in patients with G6PD deficiency. Do not administer KRYSTEXXA to patients with G6PD deficiency (4, 5.3).

ADVERSE REACTIONS

The most commonly reported adverse reactions that occurred in greater than or equal to 5% of patients treated with KRYSTEXXA 8 mg every 2 weeks are provided in Table 1.

Table 1. Adverse Reactions Occurring in 5% or More of Patients Treated with KRYSTEXXA Compared to Placebo

<table>
<thead>
<tr>
<th>Adverse Reaction (Preferred Term)</th>
<th>KRYSTEXXA 8 mg every 2 weeks (N=85)</th>
<th>Placebo (N=43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gout flare</td>
<td>65 (77%)</td>
<td>35 (81%)</td>
</tr>
<tr>
<td>Infusion reaction</td>
<td>22 (26%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>10 (12%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Contusionb, or Eczymosisb</td>
<td>9 (11%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>6 (7%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Constipation</td>
<td>5 (6%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Chest Pain</td>
<td>5 (6%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>4 (5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4 (5%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>
If the same subject in a given group had more than one occurrence in the same preferred term event category, the subject was counted only once.

Most did not occur on the day of infusion and could be related to other factors (e.g. concomitant medications relevant to contusion or ecchymosis, insulin dependent diabetes mellitus).

All patients in pre-marketing controlled clinical trials were pre-treated with an oral antihistamine, intravenous corticosteroid and/or acetaminophen to prevent anaphylaxis and infusion reaction. Patients also received non-steroidal anti-inflammatory drugs or colchicine, or both, for at least 7 days as gout flare prophylaxis before beginning KRYSTEXXA treatment. [see Boxed Warning, Warnings and Precautions (5.1, 5.2, 5.4), in full prescribing information]

Immunogenicity
Anti-pegloticase antibodies developed in 92% of patients treated with KRYSTEXXA every 2 weeks, and 26% for placebo. Anti-PEG antibodies were also detected in 42% of patients treated with KRYSTEXXA. High anti-pegloticase antibody titer was associated with a failure to maintain pegloticase-induced normalization of uric acid. The impact of anti-PEG antibodies on patients’ responses to other PEG-containing therapeutics is unknown.

There was a higher incidence of infusion reactions in patients with high anti-pegloticase antibody titer: 53% (16 of 33) in the KRYSTEXXA every 2 weeks group compared to 6% in patients who had undetectable or low antibody titers.

As with all therapeutic proteins, there is a potential for immunogenicity. The observed incidence of antibody positivity in an assay is highly dependent on several factors including assay sensitivity and specificity and assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, the comparison of the incidence of antibodies to pegloticase with the incidence of antibodies to other products may be misleading.

USE IN SPECIFIC POPULATIONS

Pregnancy Category C
There are no adequate and well-controlled studies of KRYSTEXXA in pregnant women. KRYSTEXXA should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Pegloticase was not teratogenic in rats and rabbits at approximately 50 and 75 times the maximum recommended human dose (MRHD), respectively (on a mg/m² basis at maternal doses up to 40 and 30 mg/kg twice weekly, in rats and rabbits, respectively). Statistically significant decreases in mean fetal and pup body weights were observed at approximately 50 and 75 times the MRHD respectively (on a mg/m² basis at maternal doses up to 40 and 30 mg/kg every other day, in rats and rabbits, respectively). No effects on mean fetal body weights were observed at approximately 10 and 25 times the MRHD in rats and rabbits, respectively (on a mg/m² basis at maternal doses up to 10 mg/kg twice weekly in both species).

Nursing Mothers
It is not known whether this drug is excreted in human milk. Therefore KRYSTEXXA should not be used when breastfeeding unless the clear benefit to the mother can overcome the unknown risk to the newborn/infant.

Pediatric Use
The safety and effectiveness of KRYSTEXXA in pediatric patients less than 18 years of age have not been established.

Geriatric Use
Of the total number of patients treated with KRYSTEXXA 8 mg every 2 weeks in the controlled studies, 34% (29 of 85) were 65 years of age and older and 12% (10 of 85) were 75 years of age and older. No overall differences in safety or effectiveness were observed between older and younger patients, but greater sensitivity of some older individuals cannot be ruled out. No dose adjustment is needed for patients 65 years of age and older.

Renal Impairment
No dose adjustment is required for patients with renal impairment. A total of 32% (27 of 85) of patients treated with KRYSTEXXA 8 mg every 2 weeks had a creatinine clearance of ≤62.5 mL/min. No overall differences in efficacy were observed.

PATIENT COUNSELING INFORMATION

See Medication Guide

General Information
Provide and instruct patients to read the accompanying Medication Guide before starting treatment and before each subsequent treatment.

Anaphylaxis and Infusion Reactions
• Anaphylaxis and infusion reactions can occur at any infusion while on therapy. Counsel patients on the importance of adhering to any prescribed medications to help prevent or lessen the severity of these reactions.
• Educate patients on the signs and symptoms of anaphylaxis, including wheezing, perioral or lingual edema, hemodynamic instability, and rash or urticaria.
• Educate patients on the most common signs and symptoms of an infusion reaction, including urticaria (skin rash), erythema (redness of the skin), dyspnea (difficulty breathing), flushing, chest discomfort, chest pain, and rash.
• Advise patients to seek medical care immediately if they experience any symptoms of an allergic reaction during or at any time after the infusion of KRYSTEXXA. [see Warnings and Precautions (5.1, 5.2), Adverse Reactions (6.1), in full prescribing information]
• Advise patients to discontinue any oral urate-lowering agents before starting on KRYSTEXXA and not to take any oral urate-lowering agents while on KRYSTEXXA.

Glucose-6-phosphate dehydrogenase (G6PD) Deficiency
Inform patients not to take KRYSTEXXA if they have a condition known as G6PD deficiency. Explain to patients that G6PD deficiency is more frequently found in individuals of African, Mediterranean, or Southern Asian ancestry and that they may be tested to determine if they have G6PD deficiency, unless already known. [see Warnings and Precautions (5.3), Contraindications (4), in full prescribing information]

Gout Flares
Explain to patients that gout flares may initially increase when starting treatment with KRYSTEXXA, and that medications to help reduce flares may need to be taken regularly for the first few months after KRYSTEXXA is started. [see Warnings and Precautions (5.4), Adverse Reactions (6.1), in full prescribing information] Advise patients that they should not stop KRYSTEXXA therapy if they have a flare.

Manufactured by: Horizon Pharma Rheumatology LLC Lake Forest, IL 60045 US License Number 2048

Distributed by: Horizon Pharma USA, Inc. Lake Forest, IL 60045

KRYSTEXXA is a registered trademark of Horizon Pharma Rheumatology LLC. © 2017 Horizon Pharma plc C-KRY-00020 (09/17)
A Different Direction in SHPT

Rayaldee® is the first and only extended-release prohormone of the active form of vitamin D₃ that raises 25-hydroxyvitamin D and lowers iPTH levels.

Indication and Limitations of Use

Rayaldee® (calcifediol) extended-release 30 mcg capsules is indicated for the treatment of secondary hyperparathyroidism in adults with stage 3 or 4 chronic kidney disease and serum total 25-hydroxyvitamin D levels less than 30 ng/mL. Rayaldee is not indicated in patients with stage 5 chronic kidney disease or end-stage renal disease on dialysis.

Important Safety Information

Hypercalcemia: Excessive administration of vitamin D compounds, including Rayaldee, can cause hypercalcemia and hypercalciuria. Severe hypercalcemia due to substantial overdosage of vitamin D and its metabolites may require emergency attention. Patients should be informed about the symptoms of elevated calcium. • Digitalis toxicity: Potentiaged by hypercalcemia of any cause. Monitor serum calcium and signs and symptoms of digitalis toxicity more frequently when
Rayaldee® (calcifediol) extended-release 30 mcg capsules is indicated for the treatment of secondary hyperparathyroidism in adults with stage 3 or 4 chronic kidney disease and serum total 25-hydroxyvitamin D levels less than 30 ng/mL. Rayaldee is not indicated in patients with stage 5 chronic kidney disease or end-stage renal disease.

Important Safety Information

Hypercalcemia: Excessive administration of vitamin D compounds, including Rayaldee, can cause hypercalcemia and hypercalciuria. Severe hypercalcemia due to substantial overdosage of vitamin D and its metabolites may require emergency attention. Patients should be informed about the symptoms of elevated calcium.

• Digitalis toxicity: Potentiated by hypercalcemia of any cause. Monitor serum calcium and signs and symptoms of digitalis toxicity more frequently when initiating or adjusting the dose of Rayaldee.
• Adynamic Bone Disease: Monitor for abnormally low levels of intact parathyroid hormone (iPTH) levels when using Rayaldee, and adjust dose if needed.
• The most common adverse reactions (≥3% and more frequent than placebo) were anemia, nasopharyngitis, increased blood creatinine, dyspnea, cough, congestive heart failure and constipation.
• Care should be taken while dosing Rayaldee with cytochrome P450 inhibitors, thiazides, cholestyramine or drugs stimulating microsomal hydroxylation due to the potential for drug interactions.
• Serum calcium should be below 9.8 mg/dL before initiating treatment. • Monitor serum calcium, phosphorus, 25-hydroxyvitamin D and iPTH 3 months after starting therapy or changing dose.

A Different Direction in SHPT

Rayaldee® is the first and only extended-release prohormone of the active form of vitamin D3 that raises 25-hydroxyvitamin D and lowers iPTH levels.

Please see Brief Summary of Prescribing Information on following page, and Full Prescribing Information at RAYALDEE.com.
Rayaldee

INDICATIONS AND USAGE

Rayaldee is indicated for the treatment of secondary hyperparathyroidism in patients with stage 2 or stage 3 chronic kidney disease (CKD) without macroalbuminuria and serum total 25-hydroxyvitamin D levels less than 30 ng/mL. Rayaldee is not indicated for the treatment of primary hyperparathyroidism.

CONTRAINDICATIONS

Rayaldee is contraindicated in patients with a history of hyperparathyroidism, in the presence of high calcium levels, or in patients with serum calcium levels greater than 10 mg/dL.

WARNINGS AND PRECAUTIONS

Hypercalcemia: Hypercalcemia may occur during Rayaldee treatment. At high-dose levels, hypercalcemia may be manifested by nausea, vomiting, fatigue, and constipation. In patients on dialysis, hypercalcemia may be manifested by nausea, vomiting, constipation, and musculoskeletal symptoms.

ADVERSE REACTIONS

INDICATIONS AND USAGE

Rayaldee is indicated for the treatment of secondary hyperparathyroidism in patients with stage 2 or stage 3 chronic kidney disease (CKD) without macroalbuminuria and serum total 25-hydroxyvitamin D levels less than 30 ng/mL. Rayaldee is not indicated for the treatment of primary hyperparathyroidism.

CONTRAINDICATIONS

Rayaldee is contraindicated in patients with a history of hyperparathyroidism, in the presence of high calcium levels, or in patients with serum calcium levels greater than 10 mg/dL.

WARNINGS AND PRECAUTIONS

Hypercalcemia: Hypercalcemia may occur during Rayaldee treatment. At high-dose levels, hypercalcemia may be manifested by nausea, vomiting, fatigue, and constipation. In patients on dialysis, hypercalcemia may be manifested by nausea, vomiting, constipation, and musculoskeletal symptoms.

ADVERSE REACTIONS
Book Review

Hundreds of Interlaced Fingers: A Kidney Doctor’s Search for the Perfect Match

Hardcover, 261 pages, Amistad
By Vanessa Grubbs, MD
Reviewed by Glenda Payne, RN

The effect of disparity on kidney transplant

In “Hundreds of Interlaced Fingers: A Kidney Doctor’s Search for the Perfect Match,” Dr. Vanessa Grubbs describes her personal journey from a primary care physician never really interested in nephrology to meeting and falling in love with a man on dialysis, to volunteering as a kidney donor, and finally, to deciding to specialize in nephrology. During this journey, she recognized the implicit racism that continues to exist in the medical community, where assumptions are made on the basis of preconceived ideas regarding ability to pay for medications, keep follow-up appointments, and understand the complex regimens required for success after transplantation.

This implicit racism shows up in slow referrals for transplantation (her husband waited a year for referral), delayed response to a surgical complication (a surgeon may have responded more urgently if the patient was not black), and continued beliefs that there are real biological differences in our “made-up race categories.”

“This series of assumptions and shortcuts in medicine … (where) we use race as a diagnostic tool … restricts our thinking, making it lazy at best,” Dr. Grubbs states. A broader concern expressed is that race-based generalizations are made and accepted as true with little to no evidence basis.

The title is an analogy to the similarities of an electron scanning micrograph of the structure of the glomerulus to hundreds of interlaced fingers. A primary reason Dr. Grubbs chose to specialize in nephrology was to focus on research topics to learn more about why racial disparity persists in transplantation. One proposal included looking at how many patients referred for transplant evaluation actually received transplants by race and how many people were involved in deciding who got kidney transplants by race. In addition to this quantitative research, she proposed a qualitative piece “to get at all the reasons why the numbers of who had kidney failure and who got kidney transplants didn’t add up.” Senior faculty thwarted this project as too controversial and an attempt to show the transplant system is racist. And maybe it is. As Dr. Grubbs states, “I probably would ask different research questions if I weren’t black or had different experiences, which is the very reason why it is important to have people from different backgrounds doing research.”

In 2007, Dr. Grubbs published an article, “Good for harvest, bad for planting” in Health Affairs (Millwood) (1). This article is more tightly focused on the disparities she noted in the distribution of donated kidneys. “Hundreds of Interlaced Fingers,” while including concerns about these racial disparities, also recognizes the effect of low health literacy on referral for transplant. Patients with low health literacy had an almost 80% lower likelihood of being referred for kidney transplant evaluation. Perhaps in response to this finding, sections of her book explain in layman’s terms the decline of kidney function, how dialysis works, and the risks and stresses of dialysis.

Dr. Grubbs acknowledges the incremental improvement in racial disparities that can be attributed to the recent change in the deceased donor kidney allocation system, while pointing out the feelings engendered by their evaluation at the transplant center: “The message we took away was, ‘The kidney transplant system doesn’t like black people.’” Here is the challenge posed by this book for the nephrology community: receiving a kidney transplant “has everything to do with if a person with advanced kidney disease knows they have advanced kidney disease and has access to a nephrologist who thinks they are a good candidate for transplant, and the nephrologist actually refers them—a cascade of requirements vulnerable to the effects of personal bias and racism at an institutional level.” Step one in meeting this challenge is recognizing our own biases and taking deliberate steps to overcome them.

Reference

Ure-Na is lemon-lime flavored urea used to manage hyponatremia.

YES

ure-Na is now getting covered. Sometimes it is covered after initial Prior Authorization and sometimes upon appeal or P2P, if the initial Prior Authorization is denied.**

Urea is also now on the VA National Formulary (VANF)
It is listed as: UREA 15GM/PKT/PWDR, ORAL.

➤ Cost effective.
➤ Used in out-patient & in-patient settings.
➤ Guideline supported.*
➤ Typical dosing of ure-Na is 1-3 packets per day (15-45g/day).
➤ For those paying out of pocket for ure-Na, best price is usually found by buying direct at www.ure-na.com or by calling 1-844-980-9933. Ure-Na may be a tax deduction qualified medical expense.
➤ Hospital pharmacies can order ure-Na from McKesson, Cardinal, AmerisourceBergen, and Morris & Dickson.

* The European clinical practice guideline recommended the use of oral urea as a treatment option in SIADH for moderate to profound hyponatremia.

** While ure-Na is getting covered by some health insurance, there will likely be some insurance sponsors who will opt to deny coverage.
Industry Spotlight

Cancer Drug Findings

Bristol-Myers Squibb (New York, NY) announced in early September 2017 a successful phase 3 study of a combination therapy to improve overall survival in kidney cancer. The company tested a combination of its drugs Opdivo (nivolumab) and Yervoy (ipilimumab), which demonstrated better overall survival rates than a standard-of-care drug (Pfizer’s SUTENT (sunitinib malate)) in previously untreated patients with advanced or metastatic renal cell carcinoma.

Bristol-Myers Squibb said the study was stopped early after a reduction in tumor size was noted in patients as part of a planned interim analysis. The combination treatment did not improve progression-free survival, but the trial did reduce tumor size in patients. Analysts from Barclays, quoted by Reuters, said the trial "provides perhaps the most explicit evidence to date that progression-free survival may not be the best yardstick to measure the benefit of immunology-oncology drugs."

The cancer drug bosutinib (Bosulif), under development by Pfizer, with research headquarters in Groton, CT, slowed cyst growth in patients with autosomal dominant polycystic kidney disease (ADPKD), according to a phase 2 clinical trial.

The drug is a kinase inhibitor indicated for the treatment of adult patients with differing forms of chronic myelogenous leukemia (CML) who have resistance or intolerance to prior therapy, according to prescribing information for the drug.

After two years of treatment, the annual rate of kidney enlargement was reduced by 66% in patients taking bosutinib 200 mg/day versus placebo (1.29% versus 4.74% per year, p = 0.01), according to findings reported in the *Journal of the American Society of Nephrology* (JASN 2017; doi:10.1681/ASN.2016111232).

Patients who took bosutinib at 400 mg/day had an even higher reduction in the rate of enlargement versus placebo (1.29% versus 4.74% per year). According to a protocol amendment for the trial, doses for 24 patients who initially received bosutinib at 400 mg/day were later reduced to 200 mg/day. Gastrointestinal and liver-related side effects were most common, but overall toxicity was consistent with the profile in prior studies of bosutinib, and no new toxicities were identified.

Dialyzer News

B. Braun (Melsungen, Germany; US base, Bethlehem, PA), a manufacturer of dialysis equipment and disposables and other medical products, has launched a new dialyzer called the DiaCap Pro. The filter device, which received FDA approval in late August 2017, uses a new type of fiber designed to improve dialysis dose.

The DiaCap Pro fibers clear blood toxins like urea and creatinine, while retaining molecules like albumin, and comes in three sizes (1.3 m², 1.6 m², and 1.9 m²) to address differing patient needs.

The new dialyzer was designed to fit with other B. Braun products, including the Dialog+ Hemodialysis System, Solcart bicarbonate cartridge, and the AQUAboss Water Treatment system.
Intensive BP Reduction Linked to Higher CKD Incidence

In patients with hypertension and chronic kidney disease (CKD), more-intensive blood pressure-lowering therapy is associated with lower mortality risk, concludes a meta-analysis in JAMA Internal Medicine.

A systematic review identified 30 randomized clinical trials comparing more-intensive versus less-intensive blood pressure control in adults with stage 3 to 5 CKD. Meta-analysis comprised mortality data from 18 trials including 15,924 participants with CKD, 1293 of whom died. Thirteen trials had two defined blood pressure targets; five studies compared blood pressure-lowering therapy with no treatment or placebo.

At baseline, systolic blood pressure was similar between groups: mean 148 mm Hg. Mean reductions in systolic blood pressure were 16 mm Hg in patients assigned to the more-intensive interventions versus 8 mm Hg in the less-intensive group.

Mortality was 7.8% in the more-intensive group versus 8.4% in the less-intensive group. The reduction in all-cause mortality was significant: odds ratio 0.86. There was no evidence of heterogeneity, and the results were similar in subgroup analyses, including exclusion of SPRINT.

This meta-analysis suggests a 14% reduction in all-cause mortality with more-intensive blood pressure-lowering therapy among patients with stage 3 to 5 CKD.

The mortality benefit appeared larger in trials with greater reductions in systolic blood pressure, although this was not significant. While emphasizing the need for further studies and safety monitoring, the investigators conclude, “[T]hese data support that the net benefits may outweigh the net harms of more intensive BP lowering in persons with CKD” [Malhotra R, et al. Association between more intensive vs less intensive blood pressure lowering and risk of mortality in chronic kidney disease stages 3 to 5: a systematic review and meta-analysis. JAMA Intern Med 2017; DOI:10.1001/jamainternmed.2017.4377].

Industry Spotlight

Minimal Contrast Dye Product Development

Two companies with products that reduce the amount of contrast dye in a patient’s system are raising money to increase sales and to support critical research. Contrast dye used in vascular and other imaging may cause such complications as acute kidney injury (AKI) in kidney-impaired patients.

Osprey Medical’s (Minnetonka, MN) DyeVert PLUS, which received FDA marketing clearance in March 2017, allows for a minimization of contrast dose, contrast monitoring in real-time, and notification to physicians when limits based on kidney function are reached. A special syringe allows release of minimal dye needed, with recapture of the unused portion.

Osprey plans to expand its U.S. sales team, with a focus on regions with higher rates of AKI, and to begin a pilot sales program in Germany.

Milford, Massachusetts-based RenalGuard also aims to attract funding for a trial of its contrast dye product, reports Fierce Biotech, a pharmaceutical industry blog. The company raised $14.5 million in March.

RenalGuard Therapy works by inducing higher rates of urine than are possible with standard diuretics. RenalGuard achieves these urine rates by monitoring and matching a saline infusion rate to the patient’s urine output milliliter-for-milliliter, minute-by-minute. The automated balancing reduces the risk of over- or under-hydration relative to standard infusion, the company reports.

The device protects kidneys by increasing urine in order to flush out contrast dyes before they cause damage.

Do you treat patients with diabetic kidney disease?

FIGARO-DKD and FIDELIO-DKD phase III trials will investigate cardiovascular and renal endpoints for finerenone* compared with placebo plus standard of care† in patients with diabetic kidney disease (DKD).1,2

*Finerenone is an investigational agent currently in clinical trials and is not approved by the FDA, EMA, or other health authorities. The efficacy and safety of finerenone has not been established, and this information is being provided only for the purpose of providing an overview of clinical trials for recruitment.

†Patients will receive the trial treatment in addition to their standard medical treatment of an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker.

For enrollment information outside the US, please contact FinerenoneDKDStudies@bayer.com.

NOW ENROLLING

To learn more about these trials or to refer patients, please visit DKDstudies.com or call 866-488-7425.

References:

© 2017. Bayer. All rights reserved.

100 Bayer Boulevard, Whippany, NJ 07981-0915

BAYER and the Bayer Cross are registered trademarks of Bayer.

PP-050-US-043A 06/17
ASN gratefully acknowledges the following companies and organizations for their support of Kidney Week 2017.

Corporate Supporters

Continuing Education Supporters
Early Program: What You Need to Know about Diabetes and Diabetic Kidney Disease
Supported by an independent educational grant from AstraZeneca.

Plenary Sessions
Supported by an independent educational grant from Akebia Therapeutics, Inc.

Select Sessions and Streamed Sessions
Supported by an independent educational grant from AstraZeneca.
ASN gratefully acknowledges the following companies and organizations for their support of Kidney Week 2017.

Continuing Education Supporters

- Early Program: What You Need to Know about Diabetes and Diabetic Kidney Disease
 Supported by an independent educational grant from AstraZeneca.

- Plenary Sessions
 Supported by an independent educational grant from Akebia Therapeutics, Inc.

- Select Sessions and Streamed Sessions
 Supported by an independent educational grant from AstraZeneca.

as of August 25, 2017
Policy Analyst to Speak on Future of Health Care

A nationally known health care reform expert will deliver the Christopher R. Blagg, MD, Lectureship in Renal Disease and Public Policy on Thursday, Nov. 2. Harold D. Miller will speak on “Creating a Physician-Led Health Care Future.”

Miller is the president and CEO of the Center for Health Care Quality and Payment Reform, a national policy center. He is also adjunct professor of public policy and management at Carnegie Mellon University in Pittsburgh.

Miller is a nationally recognized expert on health care payment and delivery reform. Miller has worked in more than 40 states and metropolitan regions to help physicians, hospitals, employers, health plans, and government agencies design and implement changes. He assisted the Centers for Medicare & Medicaid Services with the implementation of its Comprehensive Primary Care Initiative in 2012. He has been invited twice to testify before Congress on how to reform health care payment. He is a member of the federal Physician-Focused Payment Model Technical Advisory Committee created by Congress to advise the secretary of health and human services on the creation of alternative payment models.

Miller has written many widely used papers and reports on health care payment and delivery reform, including “From Volume to Value: Better Ways to Pay for Healthcare,” which appeared in the September 2009 issue of Health Affairs; “Win-Win-Win Approaches to Healthcare Cost Control Through Physician-Led Payment Reform,” in the March 2014 Clinical Gastroenterology and Hepatology; and “Making Value-Based Payment Work for Academic Health Centers,” in the Journal of Academic Medicine. He co-authored A Guide to Physician-Focused Alternative Payment Models, published in 2015 by the American Medical Association (AMA) and the Center for Healthcare Quality and Payment Reform. He wrote the AMA’s 2010 report, Pathways for Physician Success Under Healthcare Payment and Delivery Reforms as well as the Massachusetts Hospital Association’s 2009 report Creating Accountable Care Organizations in Massachusetts.

From 2008 to 2013, Miller served as president and CEO of the Network for Regional Healthcare Improvement, a national association of collaboratives. He was a member of the board of directors of the National Quality Forum from 2009 to 2015. From 2006 to 2010, he was a consultant to the Pittsburgh Regional Health Initiative. In 2007, he was the facilitator for a task force that prepared the recommendations for Minnesota’s path-breaking health care reform legislation in 2008.

Miller has served as the director of the Pennsylvania Governor’s Office of Policy Development, associate dean of the Heinz School of Public Policy and Management at Carnegie Mellon University, executive director of the western division of the Pennsylvania Economy League, director of the Southwestern Pennsylvania Growth Alliance, and president of the Allegheny Conference on Community Development.

State-of-the-Art Lecture

Pioneer in Tissue Bioengineering to Describe Dialysis Applications

Human-Engineered Tissues for Dialysis Access is the title of a state-of-the-art lecture to be given on Thursday, Nov. 2.

The speaker will be Laura E. Niklason, MD, PhD, the Nicholas M. Greene Professor in Anesthesiology and Biomedical Engineering at Yale University, where she has been on the faculty since 2006.

Dr. Niklason’s research focuses primarily on regenerative strategies for cardiovascular and lung tissues, but the first use of the new technology is likely to be grafts for use in hemodialysis. Dr. Niklason’s engineered blood vessels are currently in clinical trials, and are the first engineered tissues to be studied in a phase III trial. The approach does not require any cells from the patient; the engineered tissue is available “off-the-shelf.”

Studies in vascular tissue mechanics showed several decades ago that most of the mechanical properties of arteries are derived not from the cellular components, but from the collagen- and elastin-based extracellular matrix. Using this principle, Dr. Niklason’s research team utilized banked human vascular smooth muscle cells to engineer implantable arteries. In this process, they seed allogeneic vascular cells onto a degradable substrate to culture vascular tissues in a biomimetic bioreactor. After eight to 10 weeks, the engineered tissues are decellularized to produce an engineered extracellular matrix-based graft.

The advantage of using allogeneic cells for graft production is that no biopsy needs to be harvested from the patient, and no patient-specific culture time is required. The acellular grafts can be stored for six months and are available when patients need them.

These grafts have been tested most extensively for hemodialysis access in patients who are not candidates for autogenous arteriovenous fistula creation. The first patient was implanted in December 2012 in Poland. Since then, 60 patients have been implanted with engineered grafts for dialysis access, 40 patients in Europe and 20 in the US.

The grafts can be used for dialysis access as soon as four to eight weeks after implantation. This early experience has been very positive, indicating a potential future for this novel graft in providing vascular access for hemodialysis.

Dr. Niklason’s lab was one of the first to describe the engineering of whole lung tissue that could exchange gas in vivo. This work was cited in 2010 as one of the top 50 most important inventions of the year by Time magazine. Dr. Niklason was inducted into the National Academy of Inventors in 2014 and elected to the National Academy of Medicine in 2015.

She received her PhD in biophysics from the University of Chicago and her MD from the University of Michigan. She completed her residency in anesthesiology and intensive care medicine at the Massachusetts General Hospital in Boston and her postdoctoral training at the Massachusetts Institute of Technology.
Kidney Patient Leaders to Be Recognized with the President’s Medals

Two leaders of the American Association of Kidney Patients (AAKP) will be honored with ASN President’s Medals on Thursday, Nov. 2.

Paul T. Conway is president of AAKP and Richard A. Knight, MBA, is Vice President and Chair of the Public Policy Committee for AAKP.

“Paul T. Conway and Richard Knight are tireless advocates for the millions of people with kidney diseases, their families, and their caregivers,” said ASN Executive Vice President Todd Ibrahim. “This dynamic duo takes every opportunity to raise awareness about kidney diseases among the public, policymakers, politicians, and the press. In addition, they help lead the kidney community’s efforts to advocate for the highest quality care possible—including increased funding for kidney research—among the legislative and regulatory branches of the U.S. government.”

Mr. Conway has managed kidney disease for more than 35 years—including receiving peritoneal dialysis treatment for many years before a kidney transplant in 1997. Professionally, he has substantial experience developing and managing federal and state government policy development and legislative implementation strategies, including the engagement of stakeholder organizations and the use of social and traditional media.

Mr. Knight is a former hemodialysis patient who received a kidney transplant more than a decade ago. His professional background is in public policy and congressional operations; he has served in various roles on Capitol Hill, including as communication director, legislative director, and liaison to the Congressional Black Caucus.

Mr. Conway has experience in the private, nonprofit, and government sectors. His expertise in federal and state agency management and personnel operations was honed through service under four U.S. presidents, three governors and in support of five presidential transitions. He served as the team lead for the Office of Personnel Management on the transition team for President-elect Donald Trump.

His previous federal posts have included chief of staff of the Department of Labor, of the Office of Personnel Management, and of the Office of Gulf Coast Rebuilding within the Department of Homeland Security. He was also a special assistant in the White House Office of National Drug Control Policy.

He served the commonwealth of Virginia as a deputy secretary of health and human resources, a member of the Board of Health Professions, a member of the protection panel for homeland security planning, and an external reviewer of Virginia health, disability, and mental health modernization proposals.

As a patient advocacy leader and policy professional, Mr. Conway has used his knowledge of executive branch and congressional processes to elevate an independent patient voice on issues ranging from innovations in medical treatment and devices, improved access to treatment modalities, payment models, and quality-of-care measurements.

He serves on many national boards and committees, including the Kidney Health Initiative, the kidney committee of the United Network for Organ Sharing Kidney Committee, and the Center for Dialysis Innovation at the University of Washington. He has co-chaired several technical evaluation panels for the Centers for Medicare & Medicaid Services (CMS).

Mr. Knight also has a background in public policy and congressional affairs. While working for the U.S. House of Representatives, he was involved in substantial work with the House Energy and Commerce Committee and the Small Business Committee. He gained experience in federal agency budget and procurement policies working as a government contractor and for ten years as co-chair of the Baltimore Washington Corridor Chamber of Commerce annual regional government procurement fair.

As a small business owner, he is heavily involved in business and education issues through several executive networks in the Washington, D.C., region. He serves as adjunct professor at Bowie State University.

As a national kidney patient advocate, Mr. Knight was recently appointed to serve as a member of the National Institute of Diabetes and Digestive and Kidney Diseases advisory council and serves as an AAKP representative to a National Quality Forum working group. He has served as a member of four technical expert panels for CMS. He is a founding member of the End Stage Renal Disease Health Information Technology Project of the National Renal Administrators Association and serves on the National Kidney Disease Education Program’s Health Information Technology Working Group.

KIDNEY WEEK
New Orleans, LA • Oct 31 - Nov 5

View thousands of posters daily on the scientific exposition floor.

Visit each day from 10:00 a.m. to 12:00 p.m. to talk with investigators about their presentations, expand your knowledge and develop new collaborations.
State-of-the-Art Lecture

Nobel Prize Winner to Speak on G-Protein-Coupled Receptors

Dr. Kobilka graduated from Yale University School of Medicine and completed residency training in internal medicine at the Barnes Hospital, Washington University School of Medicine in St. Louis. He was a postdoctoral fellow at Duke University School of Medicine, and has been on the board of the Journal of Biological Chemistry. He serves on the editorial boards of Molecular Pharmacology and Trends in Pharmacological Sciences. Dr. Kobilka has served as a member of the grant-in-aid committee of the American Heart Association, a member of the molecular and integrative signal transduction study section of the National Institutes of Health, and chair of the Gordon Research Conference on Molecular Pharmacology.

He has been recognized with the Marilyn Farquhar Award for Podocyte Biology by the NephCure Foundation and physician scientist awards from NIH. In addition to his research and clinical activities, Dr. Pollak teaches medical students, residents, and fellows.

A graduate of the New York University School of Medicine, Dr. Pollak completed an internal medicine residency at Columbia-Presbyterian Medical Center and a nephrology fellowship at Brigham and Women's Hospital and the department of genetics at Harvard Medical School.

Take it offline.

Visit the Communities Lounge, a new attraction that enhances your Kidney Week experience—visit and connect with those working in your area of study, or working in areas you want to know more about.

The lounge is located in the exhibit hall and features:

- ASN Community Leaders
- Central Connectivity Bar
- Meeting Quads
- Relaxation Zone

Stop by booth 917 to explore the ASN Communities world.
Inflammation and Fibrosis Could Be Keys to Progression of AKI Toward CKD

The role of inflammation and fibrosis in the progression of AKI to CKD will be the subject of the Barry M. Brenner, MD, Endowed Lecture-ship on Friday, Nov. 3. The speaker will be a scientist who has done extensive research on the topic. Manjeri A. Venkatachalam, MBBS, a pro-fessor in the departments of pathology, medicine, and biochemistry at the Uni-versity of Texas Health Science Center in San Antonio.

Dr. Venkatachalam has a back-ground in both clinical and basic sci-ence. He was a house physician in in-ternal medicine for two years prior to five years training in anatomic pathology. He then gained experience as a staff physician practicing diagnostic pathology and renal pathology while conducting basic research.

His research into kidney physiology and pathology has examined pro-teinuria, glomerulosclerosis, and tubulointerstitial disease. Clinical and epidemiological studies point to the importance of AKI as a harbinger leading to CKD. During the past six years, his research has focused on the pathogenesis of tubulointerstitial pathology in the transition from AKI to CKD. As an early investigator of hemodynamic mechanisms that drive progression of CKD, Dr. Venkatachalam has noted the role that new AKI episodes could play by reducing available renal mass and interacting with CKD pathophysiology to compromise tubule recovery and worsen clinical status.

Dr. Venkatachalam's laboratory has worked to identify the cellular, bio-chemical, and signaling basis for defective tubule repair after AKI as well as the role played by failed tubule recovery in the AKI-CKD transition. His most recent research has focused on the role of nuclear and mitochon-drial DNA damage in the pathogenesis of tubule atrophy after AKI and the large-scale loss of mitochondria that takes place in the dedifferentiated tubules that become atrophic.

Dr. Venkatachalam serves on the editorial boards of the *Journal of the American Society of Nephrology* and *Kidney International* and has been on the boards of *Laboratory Investigation* and the *American Journal of Pathology*. He has served on several National Institutes of Health committees and study sections. For ASN, he has served on the program committee several times and on the acute renal failure advisory group.

He received his medical degree from the Calcutta Medical College and Calcutta University in India, with residencies at Upstate Medical Center in Syracuse, New York, and Boston City Hospital in Massachusetts.

Regulation of Sodium Transporters Will Be Lecture Subject

Alicia M. McDonough, PhD, will discuss "Inflammatory Cytokines Regulate Proximal and Distal Sodium Transporters" in the Robert W. Schrier, MD, Endowed Lectureship on Friday, Nov. 3.

Dr. McDonough is professor of integrative anatomical sciences at the Keck School of Medicine of the University of Southern California (USC) in Los An-gelles. Upon joining the USC faculty in 1981, she began studying the assembly of sodium pump subunits and defining the molecular mechanisms of sodium pump isoform regulation in cardiac and skeletal muscle by potassium and hormones. The McDonough lab initiated studies to determine the renal mechanisms responsible for regulation of sodium, potassium, and blood pressure balance as well as how homeostasis is disrupted in disease states and can be corrected therapeutically.

The lab recently investigated ion transporters' phosphorylation, abundance, subcellular distribution, and activity. The researchers' findings have enabled them to de-fine how stimuli such as dietary sodium and potassium, angiotensin II, cytokines, and injury increase renal sodium transport, as well as how the resultant hypertension decreases sodium reabsorption via pressure natriuresis. To pursue these projects, the McDonough lab has engaged with collaborators across the United States and around the world.

Dr. McDonough has published extensively and given many lectures on these top-ics. She has received the Established Investigator Award from the American Heart Association (AHA), the E.H. Starling Distinguished Lectureship from the American Physiological Society (APS), the Donald Seldin Lectureship from the AHA Council on the Kidney in Cardiovascular Disease, and several teaching awards.

She serves on several editorial boards, study sections, and committees for the ASN, APS, and AHA.

Dr. McDonough earned her doctorate in physiology at the University of Hawaii and was a postdoctoral scholar at the University of California, San Francisco, Cardio-vascular Research Institute and Columbia University.
Established in 2012, the ASN Foundation for Kidney Research funds the ASN Pre-Doctoral Fellowship Award Program, the Ben J. Lipps Research Fellowship Program, the Career Development Grants Program, the William and Sandra Bennett Clinical Scholars Program, and the American Society of Nephrology-Harold Amos Medical Faculty Development Program Award, providing more than $3,000,000 annually to young investigators, fellows, and nephrology educators.

Founders Circle Members
Thanks to the generosity of our Founding Members, the ASN Foundation for Kidney Research endowed the Ben J. Lipps Research Fellowship Program in 2015, ensuring it continues in perpetuity. The ASN Foundation is proud to welcome Keryx Biopharmaceuticals, Inc. into the Founders Circle and to recognize the ASN Members who provided generous contributions to the Career Development Grants Program and the Securing the Future Campaign.

Career Development Grants Program

Keryx Biopharmaceuticals, Inc.
$1,000,000

Bob Alpern and Pat Preisig

Jonathan and Deb Himmelfarb

William E. and Alexandra F. Mitch

Ben J. Lipps Research Fellowship Program

Fresenius Medical Care
$10,000,000

ASN

$6,500,000

American Renal Associates
$1,000,000

Amgen
$1,000,000

Baxter
$1,000,000

PKD Foundation

Polycystic Kidney Disease

$500,000

It is the generosity of individuals and companies within the kidney community that makes change possible. With the help of our Founding Members, the ASN Foundation is making great strides in supporting the next generation of nephrology clinicians, researchers, and educators who will fuel innovation and translate findings into improved quality of life for patients.
The ASN Foundation for Kidney Research congratulates the talented group of researchers and educators who were awarded grants in 2017.

Career Development Grants Program

Funding up to nine new applicants and nine continuing projects annually, the program invests $100,000 a year per investigator for two years to foster independent research careers and ensure a pipeline of innovative research in the field of nephrology.

Carl W. Gottschalk Research Scholar Grants

- **Amandeep Baiwa, PhD**
 University of Virginia
 Mitochondria Transfers to Prevent Ischemic Reperfusion Injury in Transplant

- **Wei Chen, MD, MS**
 University of Rochester
 Calcification Propensity, Using Dynamic Light Scattering, to Study Vascular Calcification in Patients with Advanced CKD

Paul G. DeCaen, PhD
Northwestern University
Defining ADPKD-2 Mutation Effects on Ciliary PKD2 Ion Channels

Kevin F. Erickson, MD, MS
Baylor College of Medicine
Dialysis Facility Closures and Their Effect on Costs, Health Outcomes, and Access to Care

Aaron J. Polichnowski, PhD
East Tennessee State University
Deleterious Effects of TNF-a on the AKI-CKD Nexus

John Merrill Grant in Transplantation

- **Ulf H. Beier, MD**
 Children's Hospital of Philadelphia
 NAD Redox Metabolism Controls T Cell Function

Oxalosis & Hyperoxaluria Foundation-ASN Foundation for Kidney Research Career Development Grant

- **Lama Nazzal, MD, MS**
 New York University
 Oxalate Metabolism in a Humanized Mouse Model

Norman Siegel Research Scholar Grant

- **John David Spencer, MD**
 Nationwide Children's Hospital
 Insulin Signaling, Antimicrobial Peptide Production, and the Intercalated Cell's Antibacterial Defenses

Ben J. Lipps Research Fellowship Program

Funding ten new research applicants and ten continuing projects annually, the program distributes $50,000 a year per fellow for two years to conduct original, meritorious research.

Ben J. Lipps Research Fellows

- **Khodor Abou Daya, MD**
 University of Pittsburgh
 Tissue Resident Memory T Cells in Organ Transplantation

- **Calyani Ganesan, MD**
 Stanford University
 Bone Outcomes in Urinary Stone Disease: Data from the Veterans Health Administration

- **Ragnar Pålsson, MD**
 Brigham and Women's Hospital
 Use of Endogenous Serum Filtration Markers for Estimation of Renal Functional Reserve

- **Vishnu S. Potluri, MD, MPH**
 University of Pennsylvania
 Impact of Neighborhood Environment on Phosphate Control Among Patients on Dialysis

- **Viktor N. Tomilin, PhD**
 University of Texas Health Science Center at Houston
 TRPC3-Dependent Ca2+ Signaling in Collecting Duct Water Reabsorption and Osmosensitivity

- **Dimitrios G. Oreopoulos Research Fellow**
 Nikolaos Skartsis, MD, PhD
 University of California, San Francisco
 The Role of Granzyme B and Serine Protease Inhibitor B in the Homeostasis of Adoptively Transferred Regulatory T Cells in Transplantation

- **Donald E. Wesson Research Fellow**
 Claire Gerber, PhD, MPH
 Northwestern University
 Effects of SGLT2 Inhibition on Mineral Metabolism and Skeletal System

George B. Rathmann Research Fellow

- **Charles Ginsberg, MD**
 University of California, San Diego
 The Effects of Phosphate on Microvascular Function

Jared J. Grantham Research Fellow

- **Matthew Lanktree, MD, PhD**
 McMaster University
 Improving Polycystic Kidney Disease Prognostication Using Imaging, Next Generation Sequencing, and Urinary Biomarkers

Sharon Anderson Research Fellow

- **Jamie Lin, MD**
 University of Texas MD Anderson Cancer Center
 The Functional Role of ARF6-GEFs in Nephron-Mediated Podocyte Cytoskeletal Remodeling and Endocytic Nephrin Trafficking

William and Sandra Bennett Clinical Scholars Program

Funded annually, the program provides $50,000 a year for two years to a nephrology educator to conduct a project to advance all facets of nephrology education and teaching.

John K. Roberts, MD
Duke University
Pencast Videos to Boost Learning and Interest in Nephrology Among Internal Medicine Residents
Andrew P. Feinberg, MD, MPH, will deliver a state-of-the-art lecture entitled “Epigenetics at the Crossroad of Genetics and Environment Leading to Disease” on Saturday, Nov. 4.

Dr. Feinberg is director of the Center for Epigenetics at the Johns Hopkins University. He also holds an adjunct professorship at the Karolinska Institute in Sweden and is a presidential scholar at Harvard’s Dana Farber Cancer Institute. Dr. Feinberg made the first discoveries of altered DNA methylation in human cancer. He proposed that human inactivated genes and loss of imprinting in cancer, and proved the epigenetic hypothesis of cancer through his work on Beckwith-Wiedemann syndrome. He also identified the first common genetic or epigenetic variant for cancer risk—loss of imprinting of insulin-like growth factor 2 in colorectal cancer. His discovery of epigenetically altered progenitor cells led to a paradigm shift in our understanding of carcinogenesis. Recently, he pioneered genome-scale epigenetics with the first epigenome center funded by the National Institutes of Health (NIH). The center has pioneered methods such as the first comprehensive genome-scale methylation, which led it to identify the major target for epigenetic variation in humans. Dr. Feinberg led the first whole genome bisulfite sequencing analysis of human cancer.

He received the NIH Pioneer Award for his idea in 2009 that genetic variants, in evolution or in cancer, could lead to increased epigenetic plasticity, exhausting survival in a changing environment. His studies of metastasis driven by stochastic epigenetic change rather than metastasis-specific mutations provided evidence for this idea.

His honors include a MERIT Award from the National Cancer Institute, election to the National Academy of Medicine, and the Feodor Lynen Medal from the German Society for Biochemistry and Molecular Biology. The Institute for Scientific Information ranks him among the most cited authors.

Dr. Feinberg received his MD and MPH from Johns Hopkins University. As a postdoctoral fellow at the University of California, San Diego, he identified epigenetic memory of cell fate in Dictyostelium. He received clinical training in medicine at the University of Pennsylvania and in medical genetics at Johns Hopkins. As a fellow there from 1983 to 1986, he developed the random priming method, which is ranked in the top 100 papers of all time in citations. He was a Howard Hughes investigator at the University of Michigan from 1986 to 1994, and returned to Johns Hopkins as the King Fahd Professor of Medicine, Molecular Biology, and Genetics.

Raymond M. Hakim, MD, PhD

The Belding H. Scribner Award will be tendered to Raymond M. Hakim, MD, PhD, on Saturday, Nov. 4, for his career-long contributions to the practice of nephrology. Dr. Hakim is professor of medicine in the division of nephrology and hypertension at the Vanderbilt University Medical Center. Established in 1995, the Belding H. Scribner Award is presented to individuals who have made outstanding contributions to the care of patients with renal disorders or have substantially influenced the clinical practice of nephrology.

Dr. Hakim has made significant contributions in patient care, research, and service to professional organizations. Dr. Hakim began his career as an engineer. He received a master of science degree from Rensselaer Polytechnic Institute and a PhD in engineering from the Massachusetts Institute of Technology in 1967. He worked in Montreal as a research engineer at Hydro-Quebec. He changed his career path to study medicine at McGill University and completed his residency in internal medicine at the Royal Victoria Hospital in 1979. He followed this with a fellowship in nephrology at Harvard Medical School and Brigham and Women’s Hospital. From 1981 to 1987, he was associate professor of medicine at Harvard and attending nephrologist at Brigham and Women’s Hospital. In 1987, he became professor of medicine at Vanderbilt University School of Medicine, and medical director of the Vanderbilt University Medical Center dialysis facility.

In 1995, Dr. Hakim was one of the founders and chief medical officer of the Renal Care Group, a provider of outpatient dialysis services. By 2005, the Renal Care Group had more than 35,000 patients and had the lowest mortality and hospitalization rates among all dialysis providers, according to the United States Renal Data System (USRDS). The group merged with Fresenius Medical Care in 2007, and Dr. Hakim became the chief medical officer, serving from 2009 to 2012. His tenure was associated with a 20% reduction in mortality and hospitalization of its patients.

Dr. Hakim has spoken at many patient and health care professional meetings, authored more than 190 articles on clinical and basic research in dialysis and plasmaapheresis, and contributed 35 chapters to medical books.

He has served as a member of the editorial boards of several journals and received the National Kidney Foundation Joel D. Kopple Award and the Medal of Excellence Award from the American Association of Kidney Patients.

John P. Peters Award to Honor Ronald J. Falk

ASN will recognize the wide-ranging contributions of Ronald J. Falk, MD, FASN, with the presentation of the John P. Peters Award on Saturday, Nov. 4.

The John P. Peters Award is given for outstanding contributions to improving the lives of patients and to furthering the understanding of the kidney in health and disease.

Dr. Falk is an internationally recognized physician-scientist who has devoted more than three decades to the study of autoimmune kidney disease and ANCA vasculitis in an effort to improve the lives of patients afflicted with these conditions. His research has led to a deeper understanding of the causes and conditions that lead to the development of ANCA vasculitis.

Dr. Falk chairs the department of medicine at the University of North Carolina. He is also chair of Carolina Dialysis, LLC, and chair and co-founder of the Carolina Vascular Access Center. In 2005, he founded and became director of the UNC Kidney Center. Dr. Falk served as ASN president from 2011 to 2012. He has served ASN in various other capacities, including on the council, finance committee, education committee, and annual meeting program committee. He has served as chair or a member of several National Institutes of Health study sections and steering committees. He founded Kidney Health Initiative, a public-private partnership with the ASN and the U.S. Food and Drug Administration.

He has served on many editorial boards, including for Kidney International, Journal of the American Society of Nephrology, Journal of Nephropathy, American Journal of Kidney Diseases, and American Family Physician. His research has resulted in more than 230 publications in peer-reviewed journals, and he has contributed some 140 book chapters and reviews and more than 300 abstracts.

Dr. Falk has received a number of distinguished professorships at UNC and was most recently honored with the Nan and Hugh Cullman Eminent Professorship in 2016. He has received numerous other honors and awards, including recognition as one of the “Best Doctors in America” every year since 1982.

Dr. Falk obtained his MD from the University of North Carolina School of Medicine. He served as chief of the division of nephrology and hypertension at the University of North Carolina from 1993 through 2015.
Joel M. Topf to Be Given Robert G. Narins Award for Contributions in Education

Joel M. Topf, MD, will receive the Robert G. Narins Award on Saturday, Nov. 4, for his innovative efforts to incorporate the latest forms of electronic communication and social media into medical education. Dr. Topf is partner at St. Clair Nephrology and a member of the Wayne State University School of Medicine in the Detroit metro area.

He became involved in medical education before he even graduated from medical school. During his third year at Wayne State University medical school, he and fellow student Sarah Faubel wrote a microbiology study guide for medical students that sold nationwide. This unexpected success inspired a second endeavor. During his internal medicine and pediatrics residency at Indiana University, he wrote a book about nephrology entitled, *The Fluid, Electrolyte, and Acid-Base Companion*.

After his nephrology fellowship residency at the University of Chicago, Dr. Topf returned to Detroit and began working at St. Clair Nephrology. In addition to his hospital rounds, clinic time, and dialysis duties, he continued to teach. In 2008, he started one of the first nephrology blogs, Precious Bodily Fluids, named after one of the characters in Stanley Kubrick’s *Dr. Strangelove*. As the number of nephrologists interested in online education grew, in 2011 he joined with Kenar D. Jhaveri, MD, FASN, and Matthew A. Sparks, MD, FASN, to establish the official blog of the American Journal of Kidney Disease. This landmark event turned blogging and social media medical education from a solo to a collaborative practice.

In 2013, Dr. Sparks and Dr. Topf created NephMadness, an online educational game that leverages the excitement surrounding the U.S. collegiate basketball tournament known as March Madness. NephMadness continues to be a high-profile, social media-based, educational campaign with participants from around the world. It involves dozens of people working to generate educational content.

The next year, Dr. Topf joined with Swapnil Hiremath to create NephJC, a journal club that uses Twitter to discuss the research, guidelines, and editorials that are driving nephrology. The outlet has reviewed more than 70 articles and engages 150 followers.

Dr. Topf is currently working with other early adopters to teach social media skills to the next generation of nephrologists through the Nephrology Social Media Collective Internship. He is helping the *Clinical Journal of the American Society of Nephrology* to incorporate the new medium of visual abstracts. He serves on the ASN Communications and Media Committee.

He is also an assistant clinical professor at the Wayne State University School of Medicine and the Oakland University William Beaumont School of Medicine.

Talk Focus on Genetic Factors in Kidney Diseases

A researcher with decades of experience will examine genetic factors in kidney diseases in the Michelle P. Winn, MD, Endowed Lectureship on Saturday, Nov. 4. Jeffrey B. Kopp, MD, will speak on “APOL1 Risk Alleles and the Podocyte.”

Dr. Kopp is chief of the kidney diseases branch at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) in Bethesda, Md. He serves as a consultant on the nephrology service at the National Institutes of Health (NIH) Clinical Center.

Dr. Kopp leads a translational research group studying FSGS and related podocyte diseases. His group’s genetic studies contributed to the identification of APOL1 as a major susceptibility gene for kidney diseases in African Americans. He will describe some of the recent highlights of their work, including the discovery that chromosome 22 harbors a major risk locus for kidney diseases in African Americans, including FSGS, HIV-associated nephropathy, and arteriosclerosis (hypertension-attributed kidney disease). APOL1 coding variants, which protect against trypanosomal infection, are strongly associated with kidney diseases. Dr. Kopp is continuing this research to try to identify the mechanisms by which APOL1 variants damage the glomerulus. He has published over 290 scientific papers.

He has served on several editorial boards, including those of the *American Journal of Kidney Disease, American Journal of Nephrology, American Journal of Physiology,* and *Kidney International.* He was the issue editor of an edition of *Seminars in Nephrology* that focused on FSGS.

He has served on the organizing committee for several NIDDK conferences and been on the ASN program committee.

Dr. Kopp began his career at NIH as a medical staff fellow in 1987 and became a senior investigator in 1995. He also serves as an adjunct professor of medicine in the Uniformed Services University of the Health Sciences.

He holds a commission with the rank of captain in the U.S. Public Health Service and participates in the rapid deployment force to provide a medical response to natural disasters. He attended the University of Pennsylvania Medical School and trained in internal medicine and nephrology at the University of Washington.

Coburn Lecture Will Cover Mineral Metabolism in CKD

A pioneer in researching mineral metabolism will deliver the Jack W. Coburn, MD, Endowed Lectureship, entitled *“Longitudinal Studies of Mineral Metabolism in CKD,”* on Saturday, Nov. 4.

The speaker will be Tamara Isakova, MD, MMSc, who is associate professor of medicine in the division of nephrology and hypertension as well as director of the Center for Translational Metabolism at the Northwestern University Feinberg School of Medicine.

Dr. Isakova has an active clinical practice, providing care for patients with CKD, kidney stones, and bone and mineral metabolism disorders. She conducts clinical research on disorders of mineral metabolism in CKD. She has published more than 70 original investigations, reviews, and book chapters; her research has been supported by the American Kidney Fund, the American Heart Association, the American Society of Nephrology (ASN), and the National Institutes of Health.

She has received many awards, including a junior faculty award from the University of Miami Miller School of Medicine and the Carl W. Gottschalk Research Scholar Award from ASN.

She is a member of the editorial board of the *Clinical Journal of the American Society of Nephrology* and a reviewer for 17 journals. Among her many professional activities, she was abstract category chair for the 2014 ASN annual meeting, a program committee member for the 2015 ASN Kidney Week, a member of the clinical scientist in nephrology committee of the American Kidney Fund, and a member of the National Kidney Foundation expert panel on the role of vitamin D in stage 3–4 CKD.

A graduate of the State University of New York Downstate College of Medicine, Dr. Isakova completed internal medicine training at Massachusetts General Hospital and nephrology training in the combined fellowship program of Massachusetts General Hospital and Brigham & Women’s Hospital.
Injury to Be Lecture Topic

Richard A. Flavell, PhD, DSc

Dr. Flavell's laboratory studies the molecular and cellular basis of the immune response, particularly as it applies to autoimmune and autoinflammatory diseases. The researchers have discovered the role of several receptor families in the innate immune response, including the role of several Toll-like receptors and intracellular Nod-like receptor families. These discoveries have led to the elucidation of the function of Nod2 in inflammatory bowel diseases and NLRP proteins in the production of interleukin-1.

Dr. Flavell has been instrumental in discovering the molecular basis of T-cell differentiation from precursor cells to differentiated subsets and provided the first example of gene regulation via direct physical interactions between pairs of chromosomes, a phenomenon known as "kissing chromosomes." His laboratory has also elucidated the mechanisms of immunoregulation that prevent autoimmunity and overaggressive responses to pathogens.

Dr. Flavell has published more than 1000 peer-reviewed papers and is one of the world's most cited immunologists.

Dr. Flavell is a fellow of the Royal Society and a member of the National Academy of Sciences and the National Academy of Medicine.

Dr. Flavell served as the founding chair of Yale's department of immunobiology for 28 years, stepping down in early 2016. Prior to joining Yale in 1988, Dr. Flavell was an assistant professor at the University of Amsterdam; head of the Laboratory of Gene Structure and Expression at the National Institute for Medical Research in the UK; and president and chief scientific officer of Biogen the Laboratory of Gene Structure and Expression at the National Institute for Medical Research in Cambridge, Mass.

He received his PhD in biochemistry from the University of Hull in England, and performed postdoctoral work at the University of Amsterdam and the University of Zurich.
Lunch will be served at each symposium. Seating is limited and available on a first-come, first-served basis to fully paid Annual Meeting participants.

Continuing Education Credit
This live activity is eligible for continuing education credit. Please visit www.asn-online.org/KidneyWeek for more information.

Thursday, November 2 – Saturday, November 4
12:45–1:45 p.m. (Doors open at 12:30 p.m.)
Hilton New Orleans Riverside

Anemia in Kidney Diseases: Beyond the Usual Suspects
St. Charles Ballroom
Support is provided by an educational grant from AstraZeneca and FibroGen.

Hyperparathyroidism in Chronic Hemodialysis Patients: What Should I Do?
Grand Salon 1
This activity is supported by educational funding provided by Amgen.

Management of Hyperkalemia in Patients on RAAS Blockade
Grand Ballroom A
Support is provided by an educational grant from Relypsy, Inc.

Onward and Upward: Hepatitis C Prevention and Treatment
Grand Ballroom C
Support is provided by an educational grant from Merck.

Basic Science Symposium: Single-Cell Sequencing to Understand Cellular Heterogeneity and Function
St. Charles Ballroom
Sponsored by the American Society of Nephrology (ASN).

Cystine: One Amino Acid – Two Renal Outcomes
Grand Salon 1
Support is provided by an educational grant from Horizon Pharma USA, Inc.

Hypoxia-Inducible Factor Stabilizers: A Physiologic Approach to Treat Anemia of CKD
Grand Ballroom C
Support is provided by an educational grant from Akebia Therapeutics, Inc.

Phosphorus Management in CKD and ESRD: A Long Road to Travel
Grand Ballroom A
Support is provided by an educational grant from Fresenius Medical Care Renal Therapies Group.

ADPKD: Advances in Pathogenesis and Treatment
Grand Ballroom C
Support is provided by an educational grant from Otsuka America Pharmaceutical, Inc.

Fluid Management and Patient Outcomes in Hemodialysis: Goal Weight or Ultrafiltration Rate?
Grand Ballroom A
Support is provided by an educational grant from Fresenius Medical Care Renal Therapies Group.

Going (Anti) Viral: New Approaches for Treating Hepatitis C
St. Charles Ballroom
Support is provided by an educational grant from AbbVie.

How Should I Administer Iron for the Management of Anemia in CKD?
Grand Salon 1
Support is provided by an educational grant from Keryx Biopharmaceuticals, Inc.

Session will be recorded and available online in the ASN Learning Center in January. Continuing education credits will not be awarded for this content.
Reduced Reinterventions for Dysfunctional AV Fistulae

The LUTONIX® 035 Drug Coated Balloon PTA Catheter enabled **longer AV fistulae function** due to **fewer reinterventions** compared to standard angioplasty. LUTONIX® 035 DCB demonstrated **71.4% Primary Patency** at 6 months versus PTA.

Time to First Reintervention

<table>
<thead>
<tr>
<th></th>
<th>Standard PTA</th>
<th>LUTONIX® 035 DCB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>163 Days</td>
<td>217 Days</td>
</tr>
<tr>
<td>MORE REINTERVENTION FREE DAYS</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

4-12 mm Diameters Available

31.3% Fewer Reinterventions than PTA at 6 Months

LUTONIX

Drug Coated Balloon PTA Catheter

LUTONIX® AV Clinical Trial data on file. N=285. At 6 months, treatment with LUTONIX® 035 DCB resulted in a primary patency rate of 71.4% versus 63.0% with PTA alone. Primary patency defined as ending with a clinically driven re-intervention of the target lesion or access thrombosis. The primary effectiveness analysis for superiority of DCB vs PTA was not met with a one-sided p-value of p = 0.0062. Number of interventions required to maintain TLP at 6 months were 44 in DCB arm versus 64 in the PTA arm. At 30 days, treatment with LUTONIX® 035 resulted in a freedom from primary safety event rate of 95.0% versus 95.8% with PTA alone. Primary safety defined as freedom from localized or systemic serious adverse events through 30 days that reasonably suggests the involvement of the AV access circuit. The primary safety endpoint for non-inferiority for DCB vs PTA was met with one-sided p-value of p = 0.0019. Percentages reported are derived from Kaplan-Meier analyses.

The LUTONIX® Catheter is indicated for percutaneous transluminal angioplasty (PTA), after pre-dilatation, for treatment of dysfunctional native arteriovenous dialysis fistulae that are 4 mm to 12 mm in diameter and up to 80 mm in length. Please consult product labels and instructions for indications, contraindications, hazards, warnings, and precautions. © 2017, C. R. Bard, Inc. All Rights Reserved. Illustration by Mike Austin. Copyright © 2017. All Rights Reserved.
Serum suPAR Said to Predict Pediatric Kidney Disease Progression

By Bridget M. Kuehn

H
er higher serum soluble urokinase receptor (suPAR) levels are associated with a higher risk of CKD progression in children, according to a study in *JAMA Pediatrics*.

The findings are the latest to suggest suPAR may be a useful biomarker for predicting onset or progression of kidney disease. A 2015 study in the *New England Journal of Medicine* showed that elevated levels of suPAR are linked with the incidence of CKD and faster decline of renal function in adult patients ([Hayek SS, et al. *N Engl J Med* 2015; 373:1916–1925]).

Not having good early biomarkers can hamper treatment for kidney disease.

“Time after time, research has shown that treatments need to be given early in the course of the disease to be the most effective,” said Michael Bennett, PhD, assistant professor of pediatrics and director of the Biomarker Laboratory at Cincinnati Children’s Hospital Medical Center. “Finding earlier markers of kidney disease and its progression can allow physicians to make better informed decisions as to the course of treatment for the patients. Earlier implementation of those treatments may lead to better outcomes.”

Nephrologists rely on biomarkers like creatinine, estimated glomerular filtration rate (eGFR), and protein in urine to identify adults and children with kidney disease. But these markers don’t do well at predicting which individuals will progress from normal kidney function to CKD or have a faster decline during kidney disease, said pediatric nephrologist Howard Trachtman, MD, professor of pediatrics at NYU Langone Medical Center, co-author of both studies.

Especially challenging is predicting kidney disease in children whose kidney dysfunction may stem from congenital disorders or diverse etiologies, Trachtman said. Two-thirds of children in the study had congenital malformations of the renal or urogenital tract, noted co-author Jochen Reiser, professor and chair of the Department of Internal Medicine at Rush University Medical Center in Chicago. Kidney disease in adults is most often caused by diabetes, hypertension, and polycystic kidney disease, Reiser noted.

“It’s a vastly different population [than adult kidney disease patients],” said Reiser.

Trachtman, Reiser, and colleagues performed a post-hoc analysis of two European prospective follow-up studies of pediatric CKD: 642 children from the 4C Study and 256 from the ESCAPE trial. About 70% of children had congenital anomalies of the kidneys and urinary tract; other diagnoses included tubulointerstitial nephropathies, glomerulopathies, and postischemic CKD. More than 60% were male; mean baseline age was 11.9 years and mean eGFR 36 mL/min/1.73 m².

Assessments between baseline suPAR and eGFR during up to 8 years of follow-up were analyzed. Disease progression was defined as 50% loss of eGFR lasting for at least 1 month, start of renal replacement therapy, and/or eGFR < 10 mL/min/1.73 m². High suPAR levels were associated with worse outcomes. Rates of endpoint-free renal survival at 5 years were 64.5% for children in the lowest quartile of baseline suPAR compared to 35.9% for those in the highest quartile. Independent risk factors for the primary endpoint were diagnosis of glomerulopathy, older age, higher blood pressure, proteinuria, and lower eGFR. Among 269 children with a baseline eGFR > 40 mL/min/1.73 m², higher suPAR levels were associated with a fivefold increase in risk of CKD progression: adjusted hazard ratio 5.12.

“We were very surprised to see the prediction [of kidney disease progression] was as strong as in adults or stronger,” Reiser said.

Despite the study’s promising findings, Bennett noted a few limitations: suPAR was measured at one time point so the study can’t track changes over time, and study participants had established kidney disease by traditional measures, so “it is not clear whether suPAR will be useful early in the clinical course with milder disease.”

“While any additional early information that can be found to help diagnose or track progression earlier in patients is likely to lead to improved outcomes down the road, more investigation needs to be completed before this finds its way into the daily practice of nephrologists,” Bennett said.

“It can take a decade or more for new biomarkers to go through enough studies to be trusted in making decisions clinically,” Bennett said. “Even then single markers are not typically useful on their own to make clinical decisions; they usually need to be combined with other markers, whether traditional markers like eGFR, or other novel biomarkers, to provide the most complete clinical picture.”

In the meantime, the study provides some valuable insights into the relationship between suPAR and kidney disease.

For example, while much study of suPAR has focused on its role in focal segmental glomerulosclerosis (FSGS), it appears to be involved in other forms of kidney disease as well. Also, researchers studying the molecular mechanisms of kidney disease may want to take a closer look at suPAR’s role and how it interacts with other molecules known to contribute to kidney disease and whether it might be a potential target for therapies.

“It’s really a novel concept that there is something outside the kidney in the blood, probably coming from the bone marrow, dominating de novo but also existing kidney disease,” Reiser said.

The researchers would like to do another study in which they follow children born with congenital malformations but otherwise functioning kidneys to determine if suPAR might predict progression in this subpopulation.

Preclinical studies are also underway to better understand how suPAR might be linked with kidney decline. Already, researchers have found that suPAR binds to integrins and podocytes, but other mechanisms may be involved, Reiser said. Trachtman said he hoped this work would ultimately lay the groundwork for clinical trials of interventions based on the underlying biology.
Highlights Include

- Over 160 Exhibiting Companies
- ASN Communities Lounge
- ASN Services
 - General Information, Foundation, KHI, Membership Services, NTDS Project, and Publications
- Attendee Lounges

Welcome Reception
Thursday, November 2
6:30 p.m. – 7:30 p.m.
ASN will host a Welcome Reception in the exhibit hall the evening of Thursday, November 2.
Supported by

Communities Lounge
Aisle 900
NEW AT KIDNEY WEEK, the Communities Lounge will be a focal point of your exhibit hall experience. Visit the lounge to learn more about ASN Communities online forum, meet the leaders, network with your peers and unwind at the relaxation zone.

Exhibits and Posters
Halls G – I • 9:30 a.m. – 2:30 p.m.

Exhibitor Spotlight Schedule
Join your colleagues for the latest advances in nephrology practices, products, services, and technologies presented in two theaters on the exhibit hall floor (no continuing education credit). Seating is limited and available on a first-come, first-served basis. All presentations include breakfast or lunch.

Exchange The Two Vouchers In Your Meeting Bag For Kidney Week Program Content.

Kidney Week On-Demand
Kidney Week On-Demand contains over 200 hours of Annual Meeting presentations. Exchange the voucher in your meeting bag for an access code, and view the presentations anytime, anywhere starting in January. Final hours available subject to speaker permission.

Abstracts CD
The Abstracts CD offers a concise and effective way to view the 2017 abstracts. Exchange the voucher in your meeting bag for a complimentary CD while supplies last at:

Visit any of the following booths for your personalized access code:

- Booth 400
- Booth 315
- Booth 1719
- Booth 1227
- Booth 701
When stability is critical, every piece counts.

CRRT built for the ICU

You already have a lot to consider when it comes to caring for your acute kidney injury patients. The PRISMAFLEX System combines versatility with intuitive functionality — it’s flexibility designed for the ICU. So you can spend more time focusing on what matters most — your patients.

- Easily switch between CRRT therapies
- Deliver TPE with no additional capital equipment
- Easy set-up and use
- Wide selection of solution options

With so many pieces to consider in treating critically ill patients, choosing Baxter as your CRRT partner is always the right move.

The PRISMAFLEX Control Unit is intended for:

Continuous Renal Replacement Therapy (CRRT) for patients weighing 20 kilograms or more with acute renal failure and/or fluid overload.

Therapeutic Plasma Exchange (TPE) therapy for patients weighing 20 kilograms or more with diseases where fluid removal of plasma components is indicated.

Rx Only. For safe and proper use of this device, refer to the Operator’s Manual.
The ASN Corporate Support Program recognizes supporters year round for their generous contributions to the Society. Through this program, supporters help ASN lead the fight against kidney disease. ASN gratefully acknowledges the following companies for their contributions in 2017.

Diamond Level

Platinum Level

Gold Level
AstraZeneca
Baxter Healthcare Corporation
OPKO Renal
Otsuka America Pharmaceutical, Inc.

Silver Level
Alexion Pharmaceuticals, Inc.
Horizon Pharma USA, Inc.
Mallinckrodt Pharmaceuticals
Reata Pharmaceuticals
Sanofi Genzyme

Bronze Level
Daiichi Sankyo, Inc.
Genentech
NxStage Medical, Inc.

as of September 1, 2017
Loma Linda University Faculty Medical Group, Transplant Institute, is seeking a Transplant Nephrologist.

Candidates must have completed a fully accredited Nephrology fellowship and be board certified. Academic appointment will be at the Assistant-, Associate-, or Full-Professor level in the Department of Medicine commensurate with the candidate's experience and credentials.

Clinical and academic responsibilities include the management of all aspects of pre- and post-transplant care of patients and resident/fellowship teaching. Clinical/basic science/translational research (according to the interests of the applicant) will be encouraged and supported.

Our program performs approximately 130 adult and pediatric transplants a year, including 30-40 living donors. We have 1,100 patients in the transplant list.

The Transplant Institute is a cohesive organization that is affiliated with Loma Linda University Medical Center and the LLU School of Medicine, with the mission to deliver whole-person care at a world class level of clinical excellence.

The Medical Center serves as the largest tertiary referral source in both Riverside and San Bernardino counties with a surrounding population approaching 4 million.

Loma Linda University is located between Los Angeles and Palm Springs in an area known as the Inland Empire. Nestled at the foot of the San Bernardino mountains, we have convenient access to beach cities, skiing hiking and a variety of other outdoor activities. This region also has excellent private and public school systems.

This opportunity is not eligible for a J1 Waiver.

Interested candidates, please send your CV to:

Mike Unterseher – Director of Physician Recruitment
800-328-1163
recruitMD@llu.edu

Contact:
Rhonda Truitt
rhonda.truitt@wt-group.com
P: 443-512-8899 x. 106 F: 443-490-4003

Closing Date & Cancellations:
Copy must be received six weeks in advance of the month in which the ad is to appear. Cancellation requests must be made in written form by fax, e-mail or postal mail and will be honored for the earliest applicable issue.

Contact:
Rhonda Truitt
rhonda.truitt@wt-group.com
P: 443-512-8899 x. 106 F: 443-490-4003

ALL ADS MUST BE PREPAID

Classified Ads

KidneyNews
Classified Advertising Information
Classified space is for advertising positions available, open faculty positions, course announcements, seminars, meetings and educational courses.

Display Advertising Rates

<table>
<thead>
<tr>
<th>Ad Size</th>
<th>1x</th>
<th>3x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Page</td>
<td>$2,600</td>
<td>$2,415</td>
</tr>
<tr>
<td>1/2 Page</td>
<td>$1,715</td>
<td>$1,530</td>
</tr>
<tr>
<td>1/3 Page</td>
<td>$1,480</td>
<td>$1,415</td>
</tr>
<tr>
<td>1/4 Page</td>
<td>$1,240</td>
<td>$1,120</td>
</tr>
<tr>
<td>1/6 Page</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Line Advertising Rates

Contact for Rates

Amgen 50, 51, Back Page
Bard. Page 44
Baxter Pages 2, 47
Bayer Page 31
Frenova Renal Research Page 5
Fresenius Medical Page 17
Horizon. Pages 23-25
Keryx Page 11

National Kidney Foundation Page 30
Mount Sinai Page 15
Nephcentric Page 29
OPKO Renal Pages 26-28
Relypsa Pages 9-10
Renal Research Institute Page 21
Wolters Kluwer Page 45

Topics that impact kidney practice, research and policy. Kidney News Online, updated daily.

www.kidneynews.org

ASN Kidney News Online
Please see package insert for full Prescribing Information.

INDICATIONS AND USAGE
PARSABIV is indicated for the treatment of secondary hyperparathyroidism (SHPT) in adult patients with chronic kidney disease (CKD) on hemodialysis.

Limitations of Use:
PARSABIV has not been studied in adult patients with parathyroid carcinoma, primary hyperparathyroidism, or with chronic kidney disease who are not on hemodialysis and is not recommended for use in these populations.

CONTRAINDICATIONS
Hypersensitivity
PARSABIV is contraindicated in patients with known hypersensitivity to etalcacitrol or any of its excipients. Hypersensitivity reactions, including pruritic rash, urticaria, and face edema, have occurred with PARSABIV. [see Adverse Reactions (6.1) in PARSABIV full prescribing information].

WARNINGS AND PRECAUTIONS
Hypocalcemia
PARSABIV lowers serum calcium [see Adverse Reactions (6.1) in PARSABIV full prescribing information] and can lead to hypocalcemia, sometimes severe. Significant lowering of serum calcium can cause paresthesias, myalgias, muscle spasms, seizures, QT interval prolongation, and ventricular arrhythmias.

QT Interval Prolongation and Ventricular Arrhythmias
In the combined placebo-controlled studies, more patients treated with PARSABIV experienced a maximum increase from baseline of greater than 60 mcC in the QTcF interval (0% placebo versus 1.2% PARSABIV). In these studies, the incidence of a maximum post-baseline predialysis QTcF > 500 mcC in the placebo and PARSABIV groups was 1.9% and 4.8%, respectively [see Adverse Reactions (6.1) in PARSABIV full prescribing information]. Patients with congenital long QT syndrome, history of QT interval prolongation, family history of long QT syndrome or sudden cardiac death, and other conditions that predispose to QT interval prolongation and ventricular arrhythmias may be at increased risk for QT interval prolongation and ventricular arrhythmias if they develop hypocalcemia due to PARSABIV. Closely monitor corrected serum calcium and QT interval in patients at risk receiving PARSABIV.

Seizures
Significant reductions in corrected serum calcium may lower the threshold for seizures. Patients with a history of seizure disorder may be at increased risk for seizures if they develop hypocalcemia due to PARSABIV. Monitor corrected serum calcium in patients with seizure disorders receiving PARSABIV.

Concurrent administration of PARSABIV with another oral calcium-sensing receptor agonist could result in severe, life-threatening hypocalcemia. Patients switching from cinacalcet to PARSABIV should discontinue cinacalcet for at least 7 days prior to initiating PARSABIV [see Dosage and Administration (2.4) in PARSABIV full prescribing information]. Closely monitor corrected serum calcium in patients receiving PARSABIV and concurrent therapies known to lower serum calcium.

Assessment of Risk Factors for QT Interval Prolongation
Significant lowering of serum calcium can cause paresthesias, myalgias, muscle spasms, seizures, QT interval prolongation, and ventricular arrhythmias. PARSABIV dose reduction or discontinuation may be necessary [see Dosage and Administration (2.3) in PARSABIV full prescribing information]. Educate patients on the symptoms of hypocalcemia, and advise them to contact a healthcare provider if they occur. If corrected serum calcium falls below the lower limit of normal or symptoms of hypocalcemia develop, start or increase calcium supplementation (including calcium, calcium-containing phosphate binders, and/or vitamin D sterols or calcitriol) as needed to maintain serum calcium in the target range of 8.0 to 10.5 mg/dL. PARSABIV may be continued if calcium levels are maintained in the target range.

Worsening Heart Failure
In clinical studies, two patients treated with PARSABIV in 1253 patient-years of exposure had upper gastrointestinal (GI) bleeding noted at the time of death while no patient in the control groups in 384 patient-years of exposure had upper GI bleeding noted at the time of death. The exact cause of GI bleeding in these patients is unknown, and there were too few cases to determine whether these cases were related to PARSABIV.

Upper Gastrointestinal Bleeding
In clinical studies, two patients treated with PARSABIV in 1253 patient-years of exposure had upper gastrointestinal (GI) bleeding noted at the time of death while no patient in the control groups in 384 patient-years of exposure had upper GI bleeding noted at the time of death. The exact cause of GI bleeding in these patients is unknown, and there were too few cases to determine whether these cases were related to PARSABIV.

Patients with risk factors for upper GI bleeding (such as known gastritis, esophagitis, ulcers, or severe vomiting) may be at increased risk for GI bleeding while receiving PARSABIV treatment. Monitor patients for worsening of common GI adverse reactions of nausea and vomiting associated with PARSABIV [see Adverse Reactions (6.1) in PARSABIV full prescribing information] and for signs and symptoms of GI bleeding and ulcerations during PARSABIV therapy. Promptly evaluate and treat any suspected GI bleeding.

Adynamic Bone
Adynamic bone may develop if PTH levels are chronically suppressed. If PTH levels decrease below the recommended target range, the dose of vitamin D sterol and/or PARSABIV should be reduced or therapy discontinued. After discontinuation, resume therapy at a lower dose to maintain PTH levels in the target range [see Dosage and Administration (2.1) in PARSABIV full prescribing information].

ADVERSE REACTIONS
The following adverse reactions are discussed in greater detail in other sections of the labeling:

- Hypocalcemia [see Warnings and Precautions (5.1) in PARSABIV full prescribing information]
- Worsening Heart Failure [see Warnings and Precautions (5.2) in PARSABIV full prescribing information]
- Upper Gastrointestinal Bleeding [see Warnings and Precautions (5.3) in PARSABIV full prescribing information]
- Adynamic Bone [see Warnings and Precautions (5.4) in PARSABIV full prescribing information]

Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

The data in Table 2 are derived from two placebo-controlled clinical studies in patients with chronic kidney disease and secondary hyperparathyroidism on hemodialysis. The data reflect exposure of 503 patients to PARSABIV with a mean duration of exposure to PARSABIV of 23.6 weeks. The mean age of patients was approximately 56 years, and 60% of the patients were male. Of the total patients, 47% were Caucasian, 28% were Black or African American, 2.6% were Asian, 1.2% were Native Hawaiian or Other Pacific Islander, and 1.6% were categorized as Other. Table 2 shows common adverse reactions associated with the use of PARSABIV in the post of placebo-controlled studies. These adverse reactions occurred more commonly on PARSABIV than on placebo and were reported in at least 5% of patients treated with PARSABIV.

Table 2: Adverse Reactions Reported in > 5% of PARSABIV-Treated Patients

<table>
<thead>
<tr>
<th>Adverse Reaction*</th>
<th>Placebo (N = 513)</th>
<th>PARSABIV (N = 503)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood calcium decreased*</td>
<td>10%</td>
<td>64%</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>7%</td>
<td>12%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9%</td>
<td>11%</td>
</tr>
<tr>
<td>Nausea</td>
<td>6%</td>
<td>11%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5%</td>
<td>9%</td>
</tr>
<tr>
<td>Headache</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Hypocalcemia*</td>
<td>0.2%</td>
<td>7%</td>
</tr>
<tr>
<td>Paresthesia</td>
<td>1%</td>
<td>6%</td>
</tr>
</tbody>
</table>

* Included adverse reactions reported with at least 1% greater incidence in the PARSABIV group compared to the placebo group
* Asymptomatic reductions in calcium below 7.5 mg/dL, or clinically significant asymptomatic reductions in corrected serum calcium between 7.5 and < 8.3 mg/dL (that required medical management)
* Symptomatic reductions in corrected serum calcium < 8.3 mg/dL

Paresthesia includes preferred terms of paresthesia and hyposthesia.
Other adverse reactions associated with the use of PARSABIV but reported in < 5% of patients in the PARSABIV group in the two placebo-controlled clinical studies were:

- Hypocalcemia: 3% and 4% for placebo and PARSABIV, respectively.
- Hypomagnesemia: 0.2% and 2% for placebo and PARSABIV, respectively.
- Hypophosphatemia: 0.2% and 1% for placebo and PARSABIV, respectively.

Description of Selected Adverse Reactions

Hypocalcemia

In the combined placebo-controlled studies, a higher proportion of patients on PARSABIV developed at least one corrected serum calcium value below 7.0 mg/dL (7.6% PARSABIV, 3.1% placebo), below 7.5 mg/dL (7.7% PARSABIV, 5.5% placebo), and below 8.3 mg/dL (79% PARSABIV, 19% placebo). In the combined placebo-controlled studies, 1% of patients in the PARSABIV group and 0% of patients in the placebo group discontinued treatment due to an adverse reaction attributed to a low corrected serum calcium.

Hypophosphatemia

In the combined placebo-controlled studies, 16% of patients treated with PARSABIV and 6.2% of patients treated with placebo had at least one measured phosphorus level below the lower normal limit (i.e., 2.2 mg/dL).

QTc Interval Prolongation Secondary to Hypocalcemia

In the combined placebo-controlled studies, more patients treated with PARSABIV experienced a maximum increase from baseline of greater than 60 msec in the QTcF interval (9% placebo versus 1.2% PARSABIV). The patient incidence of maximum post-baseline predialysis QTcF > 500 msec in the placebo and PARSABIV groups was 1.9% and 4.9%, respectively.

Hypersensitivity

In the combined placebo-controlled studies, the subject incidence of adverse reactions potentially related to hypersensitivity was 4.4% in the PARSABIV group and 3.7% in the placebo group. Hypersensitivity reactions in the PARSABIV group were pruritic rash, urticaria, and face edema.

Immunogenicity

As with all peptide therapeutics, there is potential for immunogenicity. The detection of anti-drug binding antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody positivity in an assay may be influenced by several factors, including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to etelcalcetide with the incidence of antibodies to other products may be misleading.

In clinical studies, 7.1% (71 out of 995) of patients with secondary hyperparathyroidism treated with PARSABIV for up to 6 months tested positive for binding anti-etelcalcetide antibodies. Fifty-seven out of 71 had pre-existing anti-etelcalcetide antibodies. No evidence of altered pharmacokinetic profile, clinical response, or safety profile was associated with pre-existing or developing anti-etelcalcetide antibodies. If formation of anti-etelcalcetide binding antibodies with a clinically significant effect is suspected, contact Amgen at 1-800-77-AMGEN (1-800-772-6436) to discuss antibody testing.

USE IN SPECIFIC POPULATIONS

Pregnancy

Risk Summary

There are no available data on the use of PARSABIV in pregnant women. In animal reproduction studies, effects were seen at doses associated with maternal toxicity that included hypocalcemia. In a pre- and post Natal study in rats administered etelcalcetide during organogenesis through delivery and weaning, there was a slight increase in perinatal pup mortality, delay in parturition, and transient effects on pup growth at exposures 1.8 times the human exposure for the clinical dose of 15 mg three times per week based on AUC.

Data

Animal Data

There were no effects on embryo-fetal development in Sprague-Dawley rats when etelcalcetide was dosed at 0.75, 1.5, and 3 mg/kg/day by the intravenous route during organogenesis (pre-mating to gestation day 17) at exposures up to 1.8 times human exposures at the clinical dose of 15 mg three times per week based on AUC.

No effects on embryo-fetal development were observed in New Zealand White rabbits at doses of etelcalcetide of 0.375, 0.75, and 1.5 mg/kg by the intravenous route (gestation day 7 to 19), representing up to 4.3 times human exposures based on AUC. In separate studies at higher doses of 4.5 mg/kg in rats (gestation days 6 to 17) and 2.25 mg/kg in rabbits (gestation days 7 to 20), representing 2.7 and 7 fold clinical exposures, respectively, there was reduced fetal growth associated with maternal toxicities of hypocalcemia, tremoring, and reductions in body weight and food consumption.

In a pre- and post-natal development study in Sprague-Dawley rats administered etelcalcetide at 0.75, 1.5, and 3 mg/kg/day by the intravenous route (gestation day 7 to lactation day 20), there was a slight increase in perinatal pup mortality, delay in parturition, and transient reductions in post-natal growth at 0.5 mg/kg/day representing 1.8-fold human exposures at the clinical dose of 15 mg three times per week based on AUC, associated with maternal toxicities of hypocalcemia, tremoring, and reductions in body weight and food consumption. There were no effects on sexual maturation, neurobehavioral, or reproductive function at up to 3 mg/kg/day, representing exposures up to 1.8-fold human exposure based on AUC.

Lactation

Risk Summary

There are no data regarding the presence of PARSABIV in human milk or effects on the breastfed infant or on milk production. Studies in rats showed [14C]-etelcalcetide was present in the milk at concentrations similar to plasma. Because of the potential for PARSABIV to cause adverse effects in breastfed infants including hypocalcemia, advise women that use of PARSABIV is not recommended while breastfeeding.

Data

Presence in milk was assessed following a single intravenous dose of [14C]-etelcalcetide in lactating rats at maternal exposures similar to the exposure at the human clinical dose of 15 mg three times per week. [14C]-etelcalcetide-derived radioactivity was present in milk at levels similar to plasma.

Pediatric Use

The safety and efficacy of PARSABIV have not been established in pediatric patients.

Geriatric Use

Of the 503 patients in placebo-controlled studies who received PARSABIV, 177 patients (35.2%) were ≥ 65 years old and 72 patients (14%) were ≥ 75 years old. No clinically significant differences in safety or efficacy were observed between patients ≥ 65 years and younger patients (≥ 18 and < 65 years old). No differences in plasma concentrations of etelcalcetide were observed between patients ≥ 65 years and younger patients (≥ 18 and < 65 years old).

OVERDOSAGE

There is no clinical experience with PARSABIV overdosage. Overdosage of PARSABIV may lead to hypocalcemia with or without clinical symptoms and may require treatment. Although PARSABIV is cleared by dialysis, hemodialysis has not been studied as a treatment for PARSABIV overdosage. In the event of overdosage, corrected serum calcium should be checked and patients should be monitored for symptoms of hypocalcemia, and appropriate measures should be taken (see Warnings and Precautions (5.1) in PARSABIV full prescribing information).
Parsabiv™ gives you the ability to control calcimimetic administration at the end of hemodialysis. Lower and maintain PTH, phosphate, and corrected calcium levels with the first and only IV calcimimetic.1 With Parsabiv™, calcimimetic control of delivery is in your hands.1

Indication
Parsabiv™ (etelcalcetide) is indicated for the treatment of secondary hyperparathyroidism (HPT) in adult patients with chronic kidney disease (CKD) on hemodialysis.

Limitations of Use:
Parsabiv™ has not been studied in adult patients with parathyroid carcinoma, primary hyperparathyroidism, or with CKD who are not on hemodialysis and is not recommended for use in these populations.

Important Safety Information
Contraindication: Parsabiv™ is contraindicated in patients with known hypersensitivity to etelcalcetide or any of its excipients. Hypersensitivity reactions, including pruritic rash, urticaria, and face edema, have occurred.

Hypocalcemia: Parsabiv™ lowers serum calcium and can lead to hypocalcemia, sometimes severe. Significant lowering of serum calcium can cause QT interval prolongation and ventricular arrhythmia. Patients with conditions that predispose to QT interval prolongation and ventricular arrhythmia may be at increased risk for QT interval prolongation and ventricular arrhythmias if they develop hypocalcemia due to Parsabiv™. Closely monitor corrected serum calcium and QT interval in patients at risk on Parsabiv™.

Significant reductions in corrected serum calcium may lower the threshold for seizures. Patients with a history of seizure disorder may be at increased risk for seizures if they develop hypocalcemia due to Parsabiv™. Monitor corrected serum calcium in patients with seizure disorders on Parsabiv™.

Concurrent administration of Parsabiv™ with another oral calcimimetic could result in severe, life-threatening hypocalcemia. Patients switching from cinacalcet to Parsabiv™ should discontinue cinacalcet for at least 7 days prior to initiating Parsabiv™. Closely monitor corrected serum calcium in patients receiving Parsabiv™ and concomitant therapies known to lower serum calcium.

Worsening Heart Failure: In Parsabiv™ clinical studies, cases of hypotension, congestive heart failure, and decreased myocardial performance have been reported. Closely monitor patients treated with Parsabiv™ for worsening signs and symptoms of heart failure.

Upper Gastrointestinal Bleeding: In clinical studies, 2 patients treated with Parsabiv™ in 1253 patient years of exposure had upper gastrointestinal (GI) bleeding at the time of death. The exact cause of GI bleeding in these patients is unknown and there were too few cases to determine whether these cases were related to Parsabiv™.

Patients with risk factors for upper GI bleeding, such as known gastritis, esophagitis, ulcers or severe vomiting, may be at increased risk for GI bleeding with Parsabiv™. Monitor patients for worsening of common Parsabiv™ GI adverse reactions and for signs and symptoms of GI bleeding and ulcerations during Parsabiv™ therapy.

Adynamic Bone: Adynamic bone may develop if PTH levels are chronically suppressed.

Adverse Reactions: In clinical trials of patients with secondary HPT comparing Parsabiv™ to placebo, the most common adverse reactions were blood calcium decreased (64% vs. 10%), muscle spasms (12% vs. 7%), diarrhea (11% vs. 9%), nausea (11% vs. 6%), vomiting (9% vs. 5%), headache (8% vs. 6%), hypocalcemia (7% vs. 0.2%), and paresthesia (6% vs. 1%).

Please see Brief Summary of full Prescribing Information on adjacent page.

IV = intravenous; sHPT = secondary hyperparathyroidism; PTH = parathyroid hormone.

Reference: 1. Parsabiv™ (etelcalcetide) prescribing information, Amgen.

Not an actual Parsabiv™ vial. The displayed vial is for illustrative purposes only.