ASN's Mission

To create a world without kidney diseases, the ASN Alliance for Kidney Health elevates care by educating and informing, driving breakthroughs and innovation, and advocating for policies that create transformative changes in kidney medicine throughout the world.

learn more

Contact ASN

1401 H St, NW, Ste 900, Washington, DC 20005

email@asn-online.org

202-640-4660

The Latest on X

Kidney Week

Please note that you are viewing an archived section from 2022 and some content may be unavailable. To unlock all content for 2022, please visit the archives.

Abstract: SA-PO025

Coaxial Printing of Convoluted Proximal Tubule for Kidney Disease Modeling

Session Information

  • Bioengineering
    November 05, 2022 | Location: Exhibit Hall, Orange County Convention Center‚ West Building
    Abstract Time: 10:00 AM - 12:00 PM

Category: Bioengineering

  • 300 Bioengineering

Authors

  • Masereeuw, Rosalinde, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • van Genderen, Anne Metje, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Garcia valverde, Marta, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Capendale, Pamela Elaine, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Kersten, Maj Valerie, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Sendino Garví, Elena, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Jansen, Jitske, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Mihaila, Silvia M., Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Vermonden, Tina, Universiteit Utrecht Utrechts Instituut voor Farmaceutische Wetenschappen, Utrecht, Utrecht, Netherlands
  • Zhang, Y. Shrike S., Harvard Medical School, Boston, Massachusetts, United States
Background

Genetic defects in proximal tubule (PT) transporters can lead to metabolic complications and tubulopathies. To mechanistically study these pathologies, 3D (bio)printing offers new modeling alternatives to in vivo by incorporating cell-extracellular matrix (ECM) interactions. Here, we applied co-axial printing to create a convoluted channel within a gelatin-based microfiber to model the convoluted structure of the PT and address the ECM-cells interaction in a disease model. For this, we included a cystinosin-deficient (CTNS-/-) cell line to model cystinosis, a currently uncurable kidney tubulopathy.

Methods

A 3D printing system consisting of syringe pumps, heaters, coaxial needles, and a silicon holder was designed. Fine-tuning of the gelatin/alginate-based ink composition, printing temperature and feeding rate allowed an optimal ink viscosity. CaCl2 and microbial transglutaminase were used to stabilize the ink. Healthy conditionally immortalized PTECs (ciPTEC), and isogenic CTNS-/- cells were seeded to mimic two genotypes. Immunofluorescent stainings for cytoskeleton organization (F-actin), polarization markers (a-tubulin, Na+K+-ATPase), ECM-production (collagen IV), and barrier-formation (inulin-FITC leakage) were performed to evaluate the performance of the engineered PT.

Results

The printed microfibers (length:>50cm, OD:1.5mm, ID:150μm) exhibited prolonged structural stability (42 days) and cytocompatibility in culture. All cells showed homogenous cytoskeleton organization upon 14 days of culture in the microfibers, as indicated by F-actin directionality measurements, barrier-formation and polarization with the apical marker a-tubulin and the basolateral marker Na+K+-ATPase. Cell viability was slightly impaired (60%, p=0.028) in cystinotic cells upon prolonged culturing for 14 days. Finally, CTNS-/- cells showed reduced apical transport activity by two efflux pumps, viz. breast cancer resistance protein and multidrug resistance-associated protein 4 (p<0.0001).

Conclusion

Our novel printing device showed potential to mimic a 3D environment compatible with healthy PT and tubulopathy modeling. By further improving this setup, new insights in kidney disease development and progression can be gained. This eventually aids in new treatment options.

Funding

  • Private Foundation Support